llvm-6502/lib/Target/SparcV9/SparcV9AsmPrinter.cpp

794 lines
25 KiB
C++
Raw Normal View History

//===-- SparcV9AsmPrinter.cpp - Emit SparcV9 Specific .s File --------------==//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements all of the stuff necessary to output a .s file from
// LLVM. The code in this file assumes that the specified module has already
// been compiled into the internal data structures of the Module.
//
// This code largely consists of two LLVM Pass's: a FunctionPass and a Pass.
// The FunctionPass is pipelined together with all of the rest of the code
// generation stages, and the Pass runs at the end to emit code for global
// variables and such.
//
//===----------------------------------------------------------------------===//
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Support/Mangler.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Statistic.h"
#include "SparcV9Internals.h"
#include "MachineFunctionInfo.h"
#include <string>
using namespace llvm;
namespace {
Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
//===--------------------------------------------------------------------===//
// Utility functions
/// getAsCString - Return the specified array as a C compatible string, only
/// if the predicate isString() is true.
///
std::string getAsCString(const ConstantArray *CVA) {
assert(CVA->isString() && "Array is not string compatible!");
std::string Result = "\"";
for (unsigned i = 0; i != CVA->getNumOperands(); ++i) {
unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
if (C == '"') {
Result += "\\\"";
} else if (C == '\\') {
Result += "\\\\";
} else if (isprint(C)) {
Result += C;
} else {
Result += '\\'; // print all other chars as octal value
// Convert C to octal representation
Result += ((C >> 6) & 7) + '0';
Result += ((C >> 3) & 7) + '0';
Result += ((C >> 0) & 7) + '0';
}
}
Result += "\"";
return Result;
}
inline bool ArrayTypeIsString(const ArrayType* arrayType) {
return (arrayType->getElementType() == Type::UByteTy ||
arrayType->getElementType() == Type::SByteTy);
}
unsigned findOptimalStorageSize(const TargetMachine &TM, const Type *Ty) {
// All integer types smaller than ints promote to 4 byte integers.
if (Ty->isIntegral() && Ty->getPrimitiveSize() < 4)
return 4;
return TM.getTargetData().getTypeSize(Ty);
}
inline const std::string
TypeToDataDirective(const Type* type) {
switch(type->getTypeID()) {
case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID:
return ".byte";
case Type::UShortTyID: case Type::ShortTyID:
return ".half";
case Type::UIntTyID: case Type::IntTyID:
return ".word";
case Type::ULongTyID: case Type::LongTyID: case Type::PointerTyID:
return ".xword";
case Type::FloatTyID:
return ".word";
case Type::DoubleTyID:
return ".xword";
case Type::ArrayTyID:
if (ArrayTypeIsString((ArrayType*) type))
return ".ascii";
else
return "<InvaliDataTypeForPrinting>";
default:
return "<InvaliDataTypeForPrinting>";
}
}
/// Get the size of the constant for the given target.
/// If this is an unsized array, return 0.
///
inline unsigned int
ConstantToSize(const Constant* CV, const TargetMachine& target) {
if (const ConstantArray* CVA = dyn_cast<ConstantArray>(CV)) {
const ArrayType *aty = cast<ArrayType>(CVA->getType());
if (ArrayTypeIsString(aty))
return 1 + CVA->getNumOperands();
}
return findOptimalStorageSize(target, CV->getType());
}
/// Align data larger than one L1 cache line on L1 cache line boundaries.
/// Align all smaller data on the next higher 2^x boundary (4, 8, ...).
///
inline unsigned int
SizeToAlignment(unsigned int size, const TargetMachine& target) {
const unsigned short cacheLineSize = 16;
if (size > (unsigned) cacheLineSize / 2)
return cacheLineSize;
else
for (unsigned sz=1; /*no condition*/; sz *= 2)
if (sz >= size)
return sz;
}
/// Get the size of the type and then use SizeToAlignment.
///
inline unsigned int
TypeToAlignment(const Type* type, const TargetMachine& target) {
return SizeToAlignment(findOptimalStorageSize(target, type), target);
}
/// Get the size of the constant and then use SizeToAlignment.
/// Handles strings as a special case;
inline unsigned int
ConstantToAlignment(const Constant* CV, const TargetMachine& target) {
if (const ConstantArray* CVA = dyn_cast<ConstantArray>(CV))
if (ArrayTypeIsString(cast<ArrayType>(CVA->getType())))
return SizeToAlignment(1 + CVA->getNumOperands(), target);
return TypeToAlignment(CV->getType(), target);
}
} // End anonymous namespace
namespace {
enum Sections {
Unknown,
Text,
ReadOnlyData,
InitRWData,
ZeroInitRWData,
};
class AsmPrinter {
// Mangle symbol names appropriately
Mangler *Mang;
public:
std::ostream &O;
const TargetMachine &TM;
enum Sections CurSection;
AsmPrinter(std::ostream &os, const TargetMachine &T)
: /* idTable(0), */ O(os), TM(T), CurSection(Unknown) {}
~AsmPrinter() {
delete Mang;
}
// (start|end)(Module|Function) - Callback methods invoked by subclasses
void startModule(Module &M) {
Mang = new Mangler(M);
}
void PrintZeroBytesToPad(int numBytes) {
//
// Always use single unsigned bytes for padding. We don't know upon
// what data size the beginning address is aligned, so using anything
// other than a byte may cause alignment errors in the assembler.
//
while (numBytes--)
printSingleConstantValue(Constant::getNullValue(Type::UByteTy));
}
/// Print a single constant value.
///
void printSingleConstantValue(const Constant* CV);
/// Print a constant value or values (it may be an aggregate).
/// Uses printSingleConstantValue() to print each individual value.
///
void printConstantValueOnly(const Constant* CV, int numPadBytesAfter = 0);
// Print a constant (which may be an aggregate) prefixed by all the
// appropriate directives. Uses printConstantValueOnly() to print the
// value or values.
void printConstant(const Constant* CV, unsigned Alignment,
std::string valID = "") {
if (valID.length() == 0)
valID = getID(CV);
if (Alignment == 0)
Alignment = ConstantToAlignment(CV, TM);
O << "\t.align\t" << Alignment << "\n";
// Print .size and .type only if it is not a string.
if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
if (CVA->isString()) {
// print it as a string and return
O << valID << ":\n";
O << "\t" << ".ascii" << "\t" << getAsCString(CVA) << "\n";
return;
}
O << "\t.type" << "\t" << valID << ",#object\n";
unsigned int constSize = ConstantToSize(CV, TM);
if (constSize)
O << "\t.size" << "\t" << valID << "," << constSize << "\n";
O << valID << ":\n";
printConstantValueOnly(CV);
}
// enterSection - Use this method to enter a different section of the output
// executable. This is used to only output necessary section transitions.
//
void enterSection(enum Sections S) {
if (S == CurSection) return; // Only switch section if necessary
CurSection = S;
O << "\n\t.section ";
switch (S)
{
default: assert(0 && "Bad section name!");
case Text: O << "\".text\""; break;
case ReadOnlyData: O << "\".rodata\",#alloc"; break;
case InitRWData: O << "\".data\",#alloc,#write"; break;
case ZeroInitRWData: O << "\".bss\",#alloc,#write"; break;
}
O << "\n";
}
// getID Wrappers - Ensure consistent usage
// Symbol names in SparcV9 assembly language have these rules:
// (a) Must match { letter | _ | . | $ } { letter | _ | . | $ | digit }*
// (b) A name beginning in "." is treated as a local name.
std::string getID(const Function *F) {
return Mang->getValueName(F);
}
std::string getID(const BasicBlock *BB) {
return ".L_" + getID(BB->getParent()) + "_" + Mang->getValueName(BB);
}
std::string getID(const GlobalVariable *GV) {
return Mang->getValueName(GV);
}
std::string getID(const Constant *CV) {
return ".C_" + Mang->getValueName(CV);
}
std::string getID(const GlobalValue *GV) {
if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
return getID(V);
else if (const Function *F = dyn_cast<Function>(GV))
return getID(F);
assert(0 && "Unexpected type of GlobalValue!");
return "";
}
// Combines expressions
inline std::string ConstantArithExprToString(const ConstantExpr* CE,
const TargetMachine &TM,
const std::string &op) {
return "(" + valToExprString(CE->getOperand(0), TM) + op
+ valToExprString(CE->getOperand(1), TM) + ")";
}
/// ConstantExprToString() - Convert a ConstantExpr to an asm expression
/// and return this as a string.
///
std::string ConstantExprToString(const ConstantExpr* CE,
const TargetMachine& target);
/// valToExprString - Helper function for ConstantExprToString().
/// Appends result to argument string S.
///
std::string valToExprString(const Value* V, const TargetMachine& target);
};
} // End anonymous namespace
/// Print a single constant value.
///
void AsmPrinter::printSingleConstantValue(const Constant* CV) {
assert(CV->getType() != Type::VoidTy &&
CV->getType() != Type::LabelTy &&
"Unexpected type for Constant");
assert((!isa<ConstantArray>(CV) && ! isa<ConstantStruct>(CV))
&& "Aggregate types should be handled outside this function");
O << "\t" << TypeToDataDirective(CV->getType()) << "\t";
if (const GlobalValue* GV = dyn_cast<GlobalValue>(CV)) {
O << getID(GV) << "\n";
} else if (isa<ConstantPointerNull>(CV) || isa<UndefValue>(CV)) {
// Null pointer value
O << "0\n";
} else if (const ConstantExpr* CE = dyn_cast<ConstantExpr>(CV)) {
// Constant expression built from operators, constants, and symbolic addrs
O << ConstantExprToString(CE, TM) << "\n";
} else if (CV->getType()->isPrimitiveType()) {
// Check primitive types last
if (isa<UndefValue>(CV)) {
O << "0\n";
} else if (CV->getType()->isFloatingPoint()) {
// FP Constants are printed as integer constants to avoid losing
// precision...
double Val = cast<ConstantFP>(CV)->getValue();
if (CV->getType() == Type::FloatTy) {
float FVal = (float)Val;
char *ProxyPtr = (char*)&FVal; // Abide by C TBAA rules
O << *(unsigned int*)ProxyPtr;
} else if (CV->getType() == Type::DoubleTy) {
char *ProxyPtr = (char*)&Val; // Abide by C TBAA rules
O << *(uint64_t*)ProxyPtr;
} else {
assert(0 && "Unknown floating point type!");
}
O << "\t! " << CV->getType()->getDescription()
<< " value: " << Val << "\n";
} else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
O << (int)CB->getValue() << "\n";
} else {
WriteAsOperand(O, CV, false, false) << "\n";
}
} else {
assert(0 && "Unknown elementary type for constant");
}
}
/// Print a constant value or values (it may be an aggregate).
/// Uses printSingleConstantValue() to print each individual value.
///
void AsmPrinter::printConstantValueOnly(const Constant* CV,
int numPadBytesAfter) {
if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
if (CVA->isString()) {
// print the string alone and return
O << "\t" << ".ascii" << "\t" << getAsCString(CVA) << "\n";
} else {
// Not a string. Print the values in successive locations
for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
printConstantValueOnly(CVA->getOperand(i));
}
} else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
// Print the fields in successive locations. Pad to align if needed!
const StructLayout *cvsLayout =
TM.getTargetData().getStructLayout(CVS->getType());
unsigned sizeSoFar = 0;
for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
const Constant* field = CVS->getOperand(i);
// Check if padding is needed and insert one or more 0s.
unsigned fieldSize =
TM.getTargetData().getTypeSize(field->getType());
int padSize = ((i == e-1? cvsLayout->StructSize
: cvsLayout->MemberOffsets[i+1])
- cvsLayout->MemberOffsets[i]) - fieldSize;
sizeSoFar += (fieldSize + padSize);
// Now print the actual field value
printConstantValueOnly(field, padSize);
}
assert(sizeSoFar == cvsLayout->StructSize &&
"Layout of constant struct may be incorrect!");
} else if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) {
PrintZeroBytesToPad(TM.getTargetData().getTypeSize(CV->getType()));
} else
printSingleConstantValue(CV);
if (numPadBytesAfter)
PrintZeroBytesToPad(numPadBytesAfter);
}
/// ConstantExprToString() - Convert a ConstantExpr to an asm expression
/// and return this as a string.
///
std::string AsmPrinter::ConstantExprToString(const ConstantExpr* CE,
const TargetMachine& target) {
std::string S;
switch(CE->getOpcode()) {
case Instruction::GetElementPtr:
{ // generate a symbolic expression for the byte address
const Value* ptrVal = CE->getOperand(0);
std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
const TargetData &TD = target.getTargetData();
S += "(" + valToExprString(ptrVal, target) + ") + ("
+ utostr(TD.getIndexedOffset(ptrVal->getType(),idxVec)) + ")";
break;
}
case Instruction::Cast:
// Support only non-converting casts for now, i.e., a no-op.
// This assertion is not a complete check.
assert(target.getTargetData().getTypeSize(CE->getType()) ==
target.getTargetData().getTypeSize(CE->getOperand(0)->getType()));
S += "(" + valToExprString(CE->getOperand(0), target) + ")";
break;
case Instruction::Add:
S += ConstantArithExprToString(CE, target, ") + (");
break;
case Instruction::Sub:
S += ConstantArithExprToString(CE, target, ") - (");
break;
case Instruction::Mul:
S += ConstantArithExprToString(CE, target, ") * (");
break;
case Instruction::Div:
S += ConstantArithExprToString(CE, target, ") / (");
break;
case Instruction::Rem:
S += ConstantArithExprToString(CE, target, ") % (");
break;
case Instruction::And:
// Logical && for booleans; bitwise & otherwise
S += ConstantArithExprToString(CE, target,
((CE->getType() == Type::BoolTy)? ") && (" : ") & ("));
break;
case Instruction::Or:
// Logical || for booleans; bitwise | otherwise
S += ConstantArithExprToString(CE, target,
((CE->getType() == Type::BoolTy)? ") || (" : ") | ("));
break;
case Instruction::Xor:
// Bitwise ^ for all types
S += ConstantArithExprToString(CE, target, ") ^ (");
break;
default:
assert(0 && "Unsupported operator in ConstantExprToString()");
break;
}
return S;
}
/// valToExprString - Helper function for ConstantExprToString().
/// Appends result to argument string S.
///
std::string AsmPrinter::valToExprString(const Value* V,
const TargetMachine& target) {
std::string S;
bool failed = false;
if (const GlobalValue* GV = dyn_cast<GlobalValue>(V)) {
S += getID(GV);
} else if (const Constant* CV = dyn_cast<Constant>(V)) { // symbolic or known
if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV))
S += std::string(CB == ConstantBool::True ? "1" : "0");
else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
S += itostr(CI->getValue());
else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
S += utostr(CI->getValue());
else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
S += ftostr(CFP->getValue());
else if (isa<ConstantPointerNull>(CV) || isa<UndefValue>(CV))
S += "0";
else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV))
S += ConstantExprToString(CE, target);
else
failed = true;
} else
failed = true;
if (failed) {
assert(0 && "Cannot convert value to string");
S += "<illegal-value>";
}
return S;
}
namespace {
struct SparcV9AsmPrinter : public FunctionPass, public AsmPrinter {
inline SparcV9AsmPrinter(std::ostream &os, const TargetMachine &t)
: AsmPrinter(os, t) {}
const Function *currFunction;
const char *getPassName() const {
return "Output SparcV9 Assembly for Functions";
}
virtual bool doInitialization(Module &M) {
startModule(M);
return false;
}
virtual bool runOnFunction(Function &F) {
currFunction = &F;
emitFunction(F);
return false;
}
virtual bool doFinalization(Module &M) {
emitGlobals(M);
return false;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
void emitFunction(const Function &F);
private :
void emitBasicBlock(const MachineBasicBlock &MBB);
void emitMachineInst(const MachineInstr *MI);
unsigned int printOperands(const MachineInstr *MI, unsigned int opNum);
void printOneOperand(const MachineOperand &Op, MachineOpCode opCode);
bool OpIsBranchTargetLabel(const MachineInstr *MI, unsigned int opNum);
bool OpIsMemoryAddressBase(const MachineInstr *MI, unsigned int opNum);
unsigned getOperandMask(unsigned Opcode) {
switch (Opcode) {
case V9::SUBccr:
case V9::SUBcci: return 1 << 3; // Remove CC argument
default: return 0; // By default, don't hack operands...
}
}
void emitGlobals(const Module &M);
void printGlobalVariable(const GlobalVariable *GV);
};
} // End anonymous namespace
inline bool
SparcV9AsmPrinter::OpIsBranchTargetLabel(const MachineInstr *MI,
unsigned int opNum) {
switch (MI->getOpcode()) {
case V9::JMPLCALLr:
case V9::JMPLCALLi:
case V9::JMPLRETr:
case V9::JMPLRETi:
return (opNum == 0);
default:
return false;
}
}
inline bool
SparcV9AsmPrinter::OpIsMemoryAddressBase(const MachineInstr *MI,
unsigned int opNum) {
if (TM.getInstrInfo()->isLoad(MI->getOpcode()))
return (opNum == 0);
else if (TM.getInstrInfo()->isStore(MI->getOpcode()))
return (opNum == 1);
else
return false;
}
unsigned int
SparcV9AsmPrinter::printOperands(const MachineInstr *MI, unsigned opNum) {
const MachineOperand& mop = MI->getOperand(opNum);
if (OpIsBranchTargetLabel(MI, opNum)) {
printOneOperand(mop, MI->getOpcode());
O << "+";
printOneOperand(MI->getOperand(opNum+1), MI->getOpcode());
return 2;
} else if (OpIsMemoryAddressBase(MI, opNum)) {
O << "[";
printOneOperand(mop, MI->getOpcode());
O << "+";
printOneOperand(MI->getOperand(opNum+1), MI->getOpcode());
O << "]";
return 2;
} else {
printOneOperand(mop, MI->getOpcode());
return 1;
}
}
void
SparcV9AsmPrinter::printOneOperand(const MachineOperand &mop,
MachineOpCode opCode)
{
bool needBitsFlag = true;
if (mop.isHiBits32())
O << "%lm(";
else if (mop.isLoBits32())
O << "%lo(";
else if (mop.isHiBits64())
O << "%hh(";
else if (mop.isLoBits64())
O << "%hm(";
else
needBitsFlag = false;
switch (mop.getType())
{
case MachineOperand::MO_VirtualRegister:
case MachineOperand::MO_CCRegister:
case MachineOperand::MO_MachineRegister:
{
int regNum = (int)mop.getReg();
if (regNum == TM.getRegInfo()->getInvalidRegNum()) {
// better to print code with NULL registers than to die
O << "<NULL VALUE>";
} else {
O << "%" << TM.getRegInfo()->getUnifiedRegName(regNum);
}
break;
}
case MachineOperand::MO_ConstantPoolIndex:
{
O << ".CPI_" << getID(currFunction)
<< "_" << mop.getConstantPoolIndex();
break;
}
case MachineOperand::MO_PCRelativeDisp:
{
const Value *Val = mop.getVRegValue();
assert(Val && "\tNULL Value in SparcV9AsmPrinter");
if (const BasicBlock *BB = dyn_cast<BasicBlock>(Val))
O << getID(BB);
else if (const Function *F = dyn_cast<Function>(Val))
O << getID(F);
else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Val))
O << getID(GV);
else if (const Constant *CV = dyn_cast<Constant>(Val))
O << getID(CV);
else
assert(0 && "Unrecognized value in SparcV9AsmPrinter");
break;
}
case MachineOperand::MO_SignExtendedImmed:
O << mop.getImmedValue();
break;
case MachineOperand::MO_UnextendedImmed:
O << (uint64_t) mop.getImmedValue();
break;
default:
O << mop; // use dump field
break;
}
if (needBitsFlag)
O << ")";
}
void SparcV9AsmPrinter::emitMachineInst(const MachineInstr *MI) {
unsigned Opcode = MI->getOpcode();
if (Opcode == V9::PHI)
return; // Ignore Machine-PHI nodes.
O << "\t" << TM.getInstrInfo()->getName(Opcode) << "\t";
unsigned Mask = getOperandMask(Opcode);
bool NeedComma = false;
unsigned N = 1;
for (unsigned OpNum = 0; OpNum < MI->getNumOperands(); OpNum += N)
if (! ((1 << OpNum) & Mask)) { // Ignore this operand?
if (NeedComma) O << ", "; // Handle comma outputting
NeedComma = true;
N = printOperands(MI, OpNum);
} else
N = 1;
O << "\n";
++EmittedInsts;
}
void SparcV9AsmPrinter::emitBasicBlock(const MachineBasicBlock &MBB) {
// Emit a label for the basic block
O << getID(MBB.getBasicBlock()) << ":\n";
// Loop over all of the instructions in the basic block...
for (MachineBasicBlock::const_iterator MII = MBB.begin(), MIE = MBB.end();
MII != MIE; ++MII)
emitMachineInst(MII);
O << "\n"; // Separate BB's with newlines
}
void SparcV9AsmPrinter::emitFunction(const Function &F) {
std::string CurrentFnName = getID(&F);
MachineFunction &MF = MachineFunction::get(&F);
O << "!****** Outputing Function: " << CurrentFnName << " ******\n";
// Emit constant pool for this function
const MachineConstantPool *MCP = MF.getConstantPool();
const std::vector<std::pair<Constant*, unsigned> > &CP = MCP->getConstants();
enterSection(ReadOnlyData);
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
std::string cpiName = ".CPI_" + CurrentFnName + "_" + utostr(i);
printConstant(CP[i].first, CP[i].second, cpiName);
}
enterSection(Text);
O << "\t.align\t4\n\t.global\t" << CurrentFnName << "\n";
//O << "\t.type\t" << CurrentFnName << ",#function\n";
O << "\t.type\t" << CurrentFnName << ", 2\n";
O << CurrentFnName << ":\n";
// Output code for all of the basic blocks in the function...
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E;++I)
emitBasicBlock(*I);
// Output a .size directive so the debugger knows the extents of the function
O << ".EndOf_" << CurrentFnName << ":\n\t.size "
<< CurrentFnName << ", .EndOf_"
<< CurrentFnName << "-" << CurrentFnName << "\n";
// Put some spaces between the functions
O << "\n\n";
}
void SparcV9AsmPrinter::printGlobalVariable(const GlobalVariable* GV) {
if (GV->hasExternalLinkage())
O << "\t.global\t" << getID(GV) << "\n";
if (GV->hasInitializer() &&
!(GV->getInitializer()->isNullValue() ||
isa<UndefValue>(GV->getInitializer()))) {
printConstant(GV->getInitializer(), 0, getID(GV));
} else {
O << "\t.align\t" << TypeToAlignment(GV->getType()->getElementType(),
TM) << "\n";
O << "\t.type\t" << getID(GV) << ",#object\n";
O << "\t.reserve\t" << getID(GV) << ","
<< findOptimalStorageSize(TM, GV->getType()->getElementType())
<< "\n";
}
}
void SparcV9AsmPrinter::emitGlobals(const Module &M) {
// Output global variables...
for (Module::const_global_iterator GI = M.global_begin(), GE = M.global_end(); GI != GE; ++GI)
if (! GI->isExternal()) {
assert(GI->hasInitializer());
if (GI->isConstant())
enterSection(ReadOnlyData); // read-only, initialized data
else if (GI->getInitializer()->isNullValue() ||
isa<UndefValue>(GI->getInitializer()))
enterSection(ZeroInitRWData); // read-write zero data
else
enterSection(InitRWData); // read-write non-zero data
printGlobalVariable(GI);
}
O << "\n";
}
FunctionPass *llvm::createAsmPrinterPass(std::ostream &Out, TargetMachine &TM) {
return new SparcV9AsmPrinter(Out, TM);
}