260 lines
8.4 KiB
C
Raw Normal View History

//===- DataStructure.h - Build data structure graphs -------------*- C++ -*--=//
//
// Implement the LLVM data structure analysis library.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_DATA_STRUCTURE_H
#define LLVM_ANALYSIS_DATA_STRUCTURE_H
#include "llvm/Pass.h"
#include <string>
class Type;
class DSNode; // Each node in the graph
class DSGraph; // A graph for a function
class DSNodeIterator; // Data structure graph traversal iterator
class LocalDataStructures; // A collection of local graphs for a program
//===----------------------------------------------------------------------===//
// DSNodeHandle - Implement a "handle" to a data structure node that takes care
// of all of the add/un'refing of the node to prevent the backpointers in the
// graph from getting out of date.
//
class DSNodeHandle {
DSNode *N;
public:
// Allow construction, destruction, and assignment...
DSNodeHandle(DSNode *n = 0) : N(0) { operator=(n); }
DSNodeHandle(const DSNodeHandle &H) : N(0) { operator=(H.N); }
~DSNodeHandle() { operator=(0); }
DSNodeHandle &operator=(const DSNodeHandle &H) {operator=(H.N); return *this;}
// Assignment of DSNode*, implement all of the add/un'refing (defined later)
inline DSNodeHandle &operator=(DSNode *n);
// Allow automatic, implicit, conversion to DSNode*
operator DSNode*() { return N; }
operator const DSNode*() const { return N; }
operator bool() const { return N != 0; }
operator bool() { return N != 0; }
// Allow explicit conversion to DSNode...
DSNode *get() { return N; }
const DSNode *get() const { return N; }
// Allow this to be treated like a pointer...
DSNode *operator->() { return N; }
};
//===----------------------------------------------------------------------===//
// DSNode - Data structure node class
//
// This class keeps track of a node's type, and the fields in the data
// structure.
//
//
class DSNode {
const Type *Ty;
std::vector<DSNodeHandle> Links;
std::vector<DSNodeHandle*> Referrers;
DSNode(const DSNode &); // DO NOT IMPLEMENT
void operator=(const DSNode &); // DO NOT IMPLEMENT
public:
enum NodeTy {
ShadowNode = 0 << 0, // Nothing is known about this node...
ScalarNode = 1 << 0, // Scalar of the current function contains this value
AllocaNode = 1 << 1, // This node was allocated with alloca
NewNode = 1 << 2, // This node was allocated with malloc
GlobalNode = 1 << 3, // This node was allocated by a global var decl
SubElement = 1 << 4, // This node is a part of some other node
CastNode = 1 << 5, // This node is accessed in unsafe ways
};
// NodeType - A union of the above bits. "Shadow" nodes do not add any flags
// to the nodes in the data structure graph, so it is possible to have nodes
// with a value of 0 for their NodeType. Scalar and Alloca markers go away
// when function graphs are inlined.
//
unsigned char NodeType;
DSNode(enum NodeTy NT, const Type *T);
virtual ~DSNode() {
#ifndef NDEBUG
dropAllReferences(); // Only needed to satisfy assertion checks...
#endif
assert(Referrers.empty() && "Referrers to dead node exist!");
}
// Iterator for graph interface...
typedef DSNodeIterator iterator;
inline iterator begin(); // Defined in DataStructureGraph.h
inline iterator end();
// Accessors
const Type *getType() const { return Ty; }
unsigned getNumLinks() const { return Links.size(); }
DSNode *getLink(unsigned i) {
assert(i < getNumLinks() && "Field links access out of range...");
return Links[i];
}
const DSNode *getLink(unsigned i) const {
assert(i < getNumLinks() && "Field links access out of range...");
return Links[i];
}
// addEdgeTo - Add an edge from the current node to the specified node. This
// can cause merging of nodes in the graph.
//
void addEdgeTo(unsigned LinkNo, DSNode *N);
void addEdgeTo(DSNode *N) {
assert(getNumLinks() == 1 && "Must specify a field number to add edge if "
" more than one field exists!");
addEdgeTo(0, N);
}
// mergeWith - Merge this node into the specified node, moving all links to
// and from the argument node into the current node. The specified node may
// be a null pointer (in which case, nothing happens).
//
void mergeWith(DSNode *N);
// addReferrer - Keep the referrer set up to date...
void addReferrer(DSNodeHandle *H) { Referrers.push_back(H); }
void removeReferrer(DSNodeHandle *H);
const std::vector<DSNodeHandle*> &getReferrers() const { return Referrers; }
void print(std::ostream &O, Function *F) const;
void dump() const;
std::string getCaption(Function *F) const;
virtual void dropAllReferences() {
Links.clear();
}
};
inline DSNodeHandle &DSNodeHandle::operator=(DSNode *n) {
if (N) N->removeReferrer(this);
N = n;
if (N) N->addReferrer(this);
return *this;
}
// DSGraph - The graph that represents a function.
//
class DSGraph {
Function &Func;
std::vector<DSNode*> Nodes;
DSNodeHandle RetNode; // Node that gets returned...
std::map<Value*, DSNodeHandle> ValueMap;
// FunctionCalls - This vector maintains a single entry for each call
// instruction in the current graph. Each call entry contains DSNodeHandles
// that refer to the arguments that are passed into the function call.
//
std::vector<std::vector<DSNodeHandle> > FunctionCalls;
#if 0
// cloneFunctionIntoSelf - Clone the specified method graph into the current
// method graph, returning the Return's set of the graph. If ValueMap is set
// to true, the ValueMap of the function is cloned into this function as well
// as the data structure graph itself. Regardless, the arguments value sets
// of DSG are copied into Args.
//
PointerValSet cloneFunctionIntoSelf(const DSGraph &G, bool ValueMap,
std::vector<PointerValSet> &Args);
bool RemoveUnreachableNodes();
bool UnlinkUndistinguishableNodes();
void MarkEscapeableNodesReachable(std::vector<bool> &RSN,
std::vector<bool> &RAN);
#endif
private:
// Define the interface only accessable to DataStructure
friend class LocalDataStructures;
DSGraph(Function &F); // Compute the local DSGraph
~DSGraph();
DSGraph(const DSGraph &DSG); // DO NOT IMPLEMENT
void operator=(const DSGraph &); // DO NOT IMPLEMENT
public:
Function &getFunction() const { return Func; }
#if 0
// getEscapingAllocations - Add all allocations that escape the current
// function to the specified vector.
//
void getEscapingAllocations(std::vector<AllocDSNode*> &Allocs);
// getNonEscapingAllocations - Add all allocations that do not escape the
// current function to the specified vector.
//
void getNonEscapingAllocations(std::vector<AllocDSNode*> &Allocs);
#endif
// getValueMap - Get a map that describes what the nodes the scalars in this
// function point to...
//
std::map<Value*, DSNodeHandle> &getValueMap() { return ValueMap; }
const std::map<Value*, DSNodeHandle> &getValueMap() const { return ValueMap;}
const DSNode *getRetNode() const { return RetNode; }
unsigned getGraphSize() const {
return Nodes.size();
}
void print(std::ostream &O) const;
};
// LocalDataStructures - The analysis that computes the local data structure
// graphs for all of the functions in the program.
//
class LocalDataStructures : public Pass {
// DSInfo, one graph for each function
std::map<Function*, DSGraph*> DSInfo;
public:
static AnalysisID ID; // DataStructure Analysis ID
LocalDataStructures(AnalysisID id) { assert(id == ID); }
~LocalDataStructures() { releaseMemory(); }
virtual const char *getPassName() const {
return "Local Data Structure Analysis";
}
virtual bool run(Module &M);
// getDSGraph - Return the data structure graph for the specified function.
DSGraph &getDSGraph(Function &F) const {
std::map<Function*, DSGraph*>::const_iterator I = DSInfo.find(&F);
assert(I != DSInfo.end() && "Function not in module!");
return *I->second;
}
// print - Print out the analysis results...
void print(std::ostream &O, Module *M) const;
// If the pass pipeline is done with this pass, we can release our memory...
virtual void releaseMemory();
// getAnalysisUsage - This obviously provides a data structure graph.
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addProvided(ID);
}
};
#endif