The register allocator, when it allocates a register to a virtual register defined by an implicit_def, can allocate any physical register without worrying about overlapping live ranges. It should mark all of operands of the said virtual register so later passes will do the right thing.
This is not the best solution. But it should be a lot less fragile to having the scavenger try to track what is defined by implicit_def.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74518 91177308-0d34-0410-b5e6-96231b3b80d8
implementation primarily differs from the former in that the asmprinter
doesn't make a zillion decisions about whether or not something will be
RIP relative or not. Instead, those decisions are made by isel lowering
and propagated through to the asm printer. To achieve this, we:
1. Represent RIP relative addresses by setting the base of the X86 addr
mode to X86::RIP.
2. When ISel Lowering decides that it is safe to use RIP, it lowers to
X86ISD::WrapperRIP. When it is unsafe to use RIP, it lowers to
X86ISD::Wrapper as before.
3. This removes isRIPRel from X86ISelAddressMode, representing it with
a basereg of RIP instead.
4. The addressing mode matching logic in isel is greatly simplified.
5. The asmprinter is greatly simplified, notably the "NotRIPRel" predicate
passed through various printoperand routines is gone now.
6. The various symbol printing routines in asmprinter now no longer infer
when to emit (%rip), they just print the symbol.
I think this is a big improvement over the previous situation. It does have
two small caveats though: 1. I implemented a horrible "no-rip" modifier for
the inline asm "P" constraint modifier. This is a short term hack, there is
a much better, but more involved, solution. 2. I had to xfail an
-aggressive-remat testcase because it isn't handling the use of RIP in the
constant-pool reading instruction. This specific test is easy to fix without
-aggressive-remat, which I intend to do next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74372 91177308-0d34-0410-b5e6-96231b3b80d8
decoding. Essentially, they both map to the same column in the "opcode
extensions for one- and two-byte opcodes" table in the x86 manual. The RawFrm
complicates decoding this.
Instead, use opcode 0x01, prefix 0x01, and form MRM1r. Then have the code
emitter special case these, a la [SML]FENCE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72556 91177308-0d34-0410-b5e6-96231b3b80d8
booleans. This gives a better indication of what the "addReg()" is
doing. Remembering what all of those booleans mean isn't easy, especially if you
aren't spending all of your time in that code.
I took Jakob's suggestion and made it illegal to pass in "true" for the
flag. This should hopefully prevent any unintended misuse of this (by reverting
to the old way of using addReg()).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71722 91177308-0d34-0410-b5e6-96231b3b80d8
- Synchronize instruction length computation code in X86InstrInfo with code in X86CodeEmitter.cpp
Patch by Zoltan Varga.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70929 91177308-0d34-0410-b5e6-96231b3b80d8
to precisely describe the h-register subreg register classes.
Thanks to Jakob Stoklund Olesen for spotting this and for the
initial patch!
Also, make getStoreRegOpcode and getLoadRegOpcode aware of the
needs of h registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70211 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the extra copyRegToReg calls in ScheduleDAGSDNodesEmit.cpp
unnecessary. Derived from a patch by Jakob Stoklund Olesen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69635 91177308-0d34-0410-b5e6-96231b3b80d8
either the source or destination is a physical h register.
This fixes sqlite3 with the post-RA scheduler enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69111 91177308-0d34-0410-b5e6-96231b3b80d8
- Add patterns for h-register extract, which avoids a shift and mask,
and in some cases a temporary register.
- Add address-mode matching for turning (X>>(8-n))&(255<<n), where
n is a valid address-mode scale value, into an h-register extract
and a scaled-offset address.
- Replace X86's MOV32to32_ and related instructions with the new
target-independent COPY_TO_SUBREG instruction.
On x86-64 there are complicated constraints on h registers, and
CodeGen doesn't currently provide a high-level way to express all of them,
so they are handled with a bunch of special code. This code currently only
supports extracts where the result is used by a zero-extend or a store,
though these are fairly common.
These transformations are not always beneficial; since there are only
4 h registers, they sometimes require extra move instructions, and
this sometimes increases register pressure because it can force out
values that would otherwise be in one of those registers. However,
this appears to be relatively uncommon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68962 91177308-0d34-0410-b5e6-96231b3b80d8
builds.
--- Reverse-merging (from foreign repository) r68552 into '.':
U test/CodeGen/X86/tls8.ll
U test/CodeGen/X86/tls10.ll
U test/CodeGen/X86/tls2.ll
U test/CodeGen/X86/tls6.ll
U lib/Target/X86/X86Instr64bit.td
U lib/Target/X86/X86InstrSSE.td
U lib/Target/X86/X86InstrInfo.td
U lib/Target/X86/X86RegisterInfo.cpp
U lib/Target/X86/X86ISelLowering.cpp
U lib/Target/X86/X86CodeEmitter.cpp
U lib/Target/X86/X86FastISel.cpp
U lib/Target/X86/X86InstrInfo.h
U lib/Target/X86/X86ISelDAGToDAG.cpp
U lib/Target/X86/AsmPrinter/X86ATTAsmPrinter.cpp
U lib/Target/X86/AsmPrinter/X86IntelAsmPrinter.cpp
U lib/Target/X86/AsmPrinter/X86ATTAsmPrinter.h
U lib/Target/X86/AsmPrinter/X86IntelAsmPrinter.h
U lib/Target/X86/X86ISelLowering.h
U lib/Target/X86/X86InstrInfo.cpp
U lib/Target/X86/X86InstrBuilder.h
U lib/Target/X86/X86RegisterInfo.td
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68560 91177308-0d34-0410-b5e6-96231b3b80d8
This introduces a small regression on the generated code
quality in the case we are just computing addresses, not
loading values.
Will work on it and on X86-64 support.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68552 91177308-0d34-0410-b5e6-96231b3b80d8
1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants.
2. MachineConstantPool alignment field is also a log2 value.
3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values.
4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries.
5. Asm printer uses expensive data structure multimap to track constant pool entries by sections.
6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic.
Solutions:
1. ConstantPoolSDNode alignment field is changed to keep non-log2 value.
2. MachineConstantPool alignment field is also changed to keep non-log2 value.
3. Functions that create ConstantPool nodes are passing in non-log2 alignments.
4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT.
5. Asm printer uses cheaper data structure to group constant pool entries.
6. Asm printer compute entry offsets after grouping is done.
7. Change JIT code to compute entry offsets on the fly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66875 91177308-0d34-0410-b5e6-96231b3b80d8
of MachineInstr def operands must be subtracted out. This bug
was uncovered by the recent x86 EFLAGS optimization. Before
that, the only instructions that ever needed unfolding were
things like CMP32rm, where NumDefs is zero.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66056 91177308-0d34-0410-b5e6-96231b3b80d8
suprise to some callers, e.g. register coalescer. For now, add an parameter
that tells AnalyzeBranch whether it's safe to modify the mbb. A better
solution is out there, but I don't have time to deal with it right now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64124 91177308-0d34-0410-b5e6-96231b3b80d8