Since these are all created in the DenseMap before they are referenced,
there's no problem with pointer validity by the time it's required. This
removes another use of DeleteContainerSeconds/manual memory management
which I'm cleaning up from time to time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224744 91177308-0d34-0410-b5e6-96231b3b80d8
This commit changes the way we get fake stack from ASan runtime
(to find use-after-return errors) and the way we represent local
variables:
- __asan_stack_malloc function now returns pointer to newly allocated
fake stack frame, or NULL if frame cannot be allocated. It doesn't
take pointer to real stack as an input argument, it is calculated
inside the runtime.
- __asan_stack_free function doesn't take pointer to real stack as
an input argument. Now this function is never called if fake stack
frame wasn't allocated.
- __asan_init version is bumped to reflect changes in the ABI.
- new flag "-asan-stack-dynamic-alloca" allows to store all the
function local variables in a dynamic alloca, instead of the static
one. It reduces the stack space usage in use-after-return mode
(dynamic alloca will not be called if the local variables are stored
in a fake stack), and improves the debug info quality for local
variables (they will not be described relatively to %rbp/%rsp, which
are assumed to be clobbered by function calls). This flag is turned
off by default for now, but I plan to turn it on after more
testing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224062 91177308-0d34-0410-b5e6-96231b3b80d8
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532. Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.
I have a follow-up patch prepared for `clang`. If this breaks other
sub-projects, I apologize in advance :(. Help me compile it on Darwin
I'll try to fix it. FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.
This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.
Here's a quick guide for updating your code:
- `Metadata` is the root of a class hierarchy with three main classes:
`MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from
the `Value` class hierarchy. It is typeless -- i.e., instances do
*not* have a `Type`.
- `MDNode`'s operands are all `Metadata *` (instead of `Value *`).
- `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.
If you're referring solely to resolved `MDNode`s -- post graph
construction -- just use `MDNode*`.
- `MDNode` (and the rest of `Metadata`) have only limited support for
`replaceAllUsesWith()`.
As long as an `MDNode` is pointing at a forward declaration -- the
result of `MDNode::getTemporary()` -- it maintains a side map of its
uses and can RAUW itself. Once the forward declarations are fully
resolved RAUW support is dropped on the ground. This means that
uniquing collisions on changing operands cause nodes to become
"distinct". (This already happened fairly commonly, whenever an
operand went to null.)
If you're constructing complex (non self-reference) `MDNode` cycles,
you need to call `MDNode::resolveCycles()` on each node (or on a
top-level node that somehow references all of the nodes). Also,
don't do that. Metadata cycles (and the RAUW machinery needed to
construct them) are expensive.
- An `MDNode` can only refer to a `Constant` through a bridge called
`ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).
As a side effect, accessing an operand of an `MDNode` that is known
to be, e.g., `ConstantInt`, takes three steps: first, cast from
`Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
third, cast down to `ConstantInt`.
The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
metadata schema owners transition away from using `Constant`s when
the type isn't important (and they don't care about referring to
`GlobalValue`s).
In the meantime, I've added transitional API to the `mdconst`
namespace that matches semantics with the old code, in order to
avoid adding the error-prone three-step equivalent to every call
site. If your old code was:
MDNode *N = foo();
bar(isa <ConstantInt>(N->getOperand(0)));
baz(cast <ConstantInt>(N->getOperand(1)));
bak(cast_or_null <ConstantInt>(N->getOperand(2)));
bat(dyn_cast <ConstantInt>(N->getOperand(3)));
bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));
you can trivially match its semantics with:
MDNode *N = foo();
bar(mdconst::hasa <ConstantInt>(N->getOperand(0)));
baz(mdconst::extract <ConstantInt>(N->getOperand(1)));
bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2)));
bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3)));
bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));
and when you transition your metadata schema to `MDInt`:
MDNode *N = foo();
bar(isa <MDInt>(N->getOperand(0)));
baz(cast <MDInt>(N->getOperand(1)));
bak(cast_or_null <MDInt>(N->getOperand(2)));
bat(dyn_cast <MDInt>(N->getOperand(3)));
bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));
- A `CallInst` -- specifically, intrinsic instructions -- can refer to
metadata through a bridge called `MetadataAsValue`. This is a
subclass of `Value` where `getType()->isMetadataTy()`.
`MetadataAsValue` is the *only* class that can legally refer to a
`LocalAsMetadata`, which is a bridged form of non-`Constant` values
like `Argument` and `Instruction`. It can also refer to any other
`Metadata` subclass.
(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223802 91177308-0d34-0410-b5e6-96231b3b80d8
Introduce the ``llvm.instrprof_increment`` intrinsic and the
``-instrprof`` pass. These provide the infrastructure for writing
counters for profiling, as in clang's ``-fprofile-instr-generate``.
The implementation of the instrprof pass is ported directly out of the
CodeGenPGO classes in clang, and with the followup in clang that rips
that code out to use these new intrinsics this ends up being NFC.
Doing the instrumentation this way opens some doors in terms of
improving the counter performance. For example, this will make it
simple to experiment with alternate lowering strategies, and allows us
to try handling profiling specially in some optimizations if we want
to.
Finally, this drastically simplifies the frontend and puts all of the
lowering logic in one place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223672 91177308-0d34-0410-b5e6-96231b3b80d8
Do not realign origin address if the corresponding application
address is at least 4-byte-aligned.
Saves 2.5% code size in track-origins mode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223464 91177308-0d34-0410-b5e6-96231b3b80d8
This change makes MemorySanitizer instrumentation a bit more strict
about instructions that have no origin id assigned to them.
This would have caught the bug that was fixed in r222918.
This is re-commit of r222997, reverted in r223211, with 3 more
missing origins added.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223236 91177308-0d34-0410-b5e6-96231b3b80d8
This change makes MemorySanitizer instrumentation a bit more strict
about instructions that have no origin id assigned to them.
This would have caught the bug that was fixed in r222918.
No functional change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222997 91177308-0d34-0410-b5e6-96231b3b80d8
This is to be consistent with StringSet and ultimately with the standard
library's associative container insert function.
This lead to updating SmallSet::insert to return pair<iterator, bool>,
and then to update SmallPtrSet::insert to return pair<iterator, bool>,
and then to update all the existing users of those functions...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222334 91177308-0d34-0410-b5e6-96231b3b80d8
Windows defines NULL to 0, which when used as an argument to a variadic
function, is not a null pointer constant. As a result, Clang's
-Wsentinel fires on this code. Using '0' would be wrong on most 64-bit
platforms, but both MSVC and Clang make it work on Windows. Sidestep the
issue with nullptr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221940 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change moves asan-coverage instrumentation
into a separate Module pass.
The other part of the change in clang introduces a new flag
-fsanitize-coverage=N.
Another small patch will update tests in compiler-rt.
With this patch no functionality change is expected except for the flag name.
The following changes will make the coverage instrumentation work with tsan/msan
Test Plan: Run regression tests, chromium.
Reviewers: nlewycky, samsonov
Reviewed By: nlewycky, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6152
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221718 91177308-0d34-0410-b5e6-96231b3b80d8
Instead, we're going to separate metadata from the Value hierarchy. See
PR21532.
This reverts commit r221375.
This reverts commit r221373.
This reverts commit r221359.
This reverts commit r221167.
This reverts commit r221027.
This reverts commit r221024.
This reverts commit r221023.
This reverts commit r220995.
This reverts commit r220994.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221711 91177308-0d34-0410-b5e6-96231b3b80d8
The variable is private, so the name should not be relied on. Also, the
linker uses the sections, so asan should too when trying to avoid causing
the linker problems.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221480 91177308-0d34-0410-b5e6-96231b3b80d8
When generating gcov compatible profiling, we sometimes skip emitting
data for functions for one reason or another. However, this was
emitting different function IDs in the .gcno and .gcda files, because
the .gcno case was using the loop index before skipping functions and
the .gcda the array index after. This resulted in completely invalid
gcov data.
This fixes the problem by making the .gcno loop track the ID
separately from the loop index.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221441 91177308-0d34-0410-b5e6-96231b3b80d8
Change `NamedMDNode::getOperator()` from returning `MDNode *` to
returning `Value *`. To reduce boilerplate at some call sites, add a
`getOperatorAsMDNode()` for named metadata that's expected to only
return `MDNode` -- for now, that's everything, but debug node named
metadata (such as llvm.dbg.cu and llvm.dbg.sp) will soon change. This
is part of PR21433.
Note that there's a follow-up patch to clang for the API change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221375 91177308-0d34-0410-b5e6-96231b3b80d8
We currently have no infrastructure to support these correctly.
This is accomplished by generating a call to a runtime library function that
aborts at runtime in place of the regular wrapper for such functions. Direct
calls are rewritten in the usual way during traversal of the caller's IR.
We also remove the "split-stack" attribute from such wrappers, as the code
generator cannot currently handle split-stack vararg functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221360 91177308-0d34-0410-b5e6-96231b3b80d8
Change `Instruction::getMetadata()` to return `Value` as part of
PR21433.
Update most callers to use `Instruction::getMDNode()`, which wraps the
result in a `cast_or_null<MDNode>`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221024 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The previous calling convention prevented custom functions from being able
to access argument labels unless it knew how many variadic arguments there
were, and of which type. This restriction made it impossible to correctly
model functions in the printf family, as it is legal to pass more arguments
than required to those functions. We now pass arguments in the following order:
non-vararg arguments
labels for non-vararg arguments
[if vararg function, pointer to array of labels for vararg arguments]
[if non-void function, pointer to label for return value]
vararg arguments
Differential Revision: http://reviews.llvm.org/D6028
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220906 91177308-0d34-0410-b5e6-96231b3b80d8
ParamTLS (shadow for function arguments) is of limited size. This change
makes all arguments that do not fit unpoisoned, and avoids writing
past the end of a TLS buffer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220351 91177308-0d34-0410-b5e6-96231b3b80d8
This is somewhat the inverse of how similar bugs in DAE and ArgPromo
manifested and were addressed. In those passes, individual call sites
were visited explicitly, and then the old function was deleted. This
left the debug info with a null llvm::Function* that needed to be
updated to point to the new function.
In the case of DFSan, it RAUWs the old function with the wrapper, which
includes debug info. So now the debug info refers to the wrapper, which
doesn't actually have any instructions with debug info in it, so it is
ignored entirely - resulting in a DW_TAG_subprogram with no high/low pc,
etc. Instead, fix up the debug info to refer to the original function
after the RAUW messed it up.
Reviewed/discussed with Peter Collingbourne on the llvm-dev mailing
list.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219249 91177308-0d34-0410-b5e6-96231b3b80d8
Take a StringRef instead of a "const char *".
Take a "std::error_code &" instead of a "std::string &" for error.
A create static method would be even better, but this patch is already a bit too
big.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216393 91177308-0d34-0410-b5e6-96231b3b80d8
We now use a std::vector instead of a DenseSet to store the list of
label checks so that we can iterate over it deterministically.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216255 91177308-0d34-0410-b5e6-96231b3b80d8
Because declarations of these functions can appear in places like autoconf
checks, they have to be handled somehow, even though we do not support
vararg custom functions. We do so by printing a warning and calling the
uninstrumented function, as we do for unimplemented functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216042 91177308-0d34-0410-b5e6-96231b3b80d8
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215558 91177308-0d34-0410-b5e6-96231b3b80d8
First, avoid calling setTailCall(false) on musttail calls. The funciton
prototypes should be "congruent", so the shadow layout should be exactly
the same.
Second, avoid inserting instrumentation after a musttail call to
propagate the return value shadow. We don't need to propagate the
result of a tail call, it should already be in the right place.
Reviewed By: eugenis
Differential Revision: http://reviews.llvm.org/D4331
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215415 91177308-0d34-0410-b5e6-96231b3b80d8
already have a large number of blocks. Works around a performance issue with
the greedy register allocator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214944 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of creating global variables for source locations and global names,
just create metadata nodes and strings. They will be transformed into actual
globals in the instrumentation pass (if necessary). This approach is more
flexible:
1) we don't have to ensure that our custom globals survive all the optimizations
2) if globals are discarded for some reason, we will simply ignore metadata for them
and won't have to erase corresponding globals
3) metadata for source locations can be reused for other purposes: e.g. we may
attach source location metadata to alloca instructions and provide better descriptions
for stack variables in ASan error reports.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214604 91177308-0d34-0410-b5e6-96231b3b80d8
Switch array type shadow from a single integer to
an array of integers (i.e. make it per-element).
This simplifies instrumentation of extractvalue and fixes PR20493.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214398 91177308-0d34-0410-b5e6-96231b3b80d8
DITypeArray is an array of DITypeRef, at its creation, we will create
DITypeRef (i.e use the identifier if the type node has an identifier).
This is the last patch to unique the type array of a subroutine type.
rdar://17628609
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214132 91177308-0d34-0410-b5e6-96231b3b80d8
This is the second of a series of patches to handle type uniqueing of the
type array for a subroutine type.
For vector and array types, getElements returns the array of subranges, so it
is a better name than getTypeArray. Even for class, struct and enum types,
getElements returns the members, which can be subprograms.
setArrays can set up to two arrays, the second is the templates.
This commit should have no functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214112 91177308-0d34-0410-b5e6-96231b3b80d8
Origin is meaningless for fully initialized values. Avoid
storing origin for function arguments that are known to
be always initialized (i.e. shadow is a compile-time null
constant).
This is not about correctness, but purely an optimization.
Seems to affect compilation time of blacklisted functions
significantly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213239 91177308-0d34-0410-b5e6-96231b3b80d8
Specifically, when building a union query, if we are dominated by an identical
query then use the result of that query instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213047 91177308-0d34-0410-b5e6-96231b3b80d8
Currently ASan instrumentation pass creates a string with global name
for each instrumented global (to include global names in the error report). Global
name is already mangled at this point, and we may not be able to demangle it
at runtime (e.g. there is no __cxa_demangle on Android).
Instead, create a string with fully qualified global name in Clang, and pass it
to ASan instrumentation pass in llvm.asan.globals metadata. If there is no metadata
for some global, ASan will use the original algorithm.
This fixes https://code.google.com/p/address-sanitizer/issues/detail?id=264.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212872 91177308-0d34-0410-b5e6-96231b3b80d8
Turn llvm::SpecialCaseList into a simple class that parses text files in
a specified format and knows nothing about LLVM IR. Move this class into
LLVMSupport library. Implement two users of this class:
* DFSanABIList in DFSan instrumentation pass.
* SanitizerBlacklist in Clang CodeGen library.
The latter will be modified to use actual source-level information from frontend
(source file names) instead of unstable LLVM IR things (LLVM Module identifier).
Remove dependency edge from ClangCodeGen/ClangDriver to LLVMTransformUtils.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212643 91177308-0d34-0410-b5e6-96231b3b80d8
All blacklisting logic is now moved to the frontend (Clang).
If a function (or source file it is in) is blacklisted, it doesn't
get sanitize_address attribute and is therefore not instrumented.
If a global variable (or source file it is in) is blacklisted, it is
reported to be blacklisted by the entry in llvm.asan.globals metadata,
and is not modified by the instrumentation.
The latter may lead to certain false positives - not all the globals
created by Clang are described in llvm.asan.globals metadata (e.g,
RTTI descriptors are not), so we may start reporting errors on them
even if "module" they appear in is blacklisted. We assume it's fine
to take such risk:
1) errors on these globals are rare and usually indicate wild memory access
2) we can lazily add descriptors for these globals into llvm.asan.globals
lazily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212505 91177308-0d34-0410-b5e6-96231b3b80d8
With this change all values passed through blacklisted functions
become fully initialized. Previous behavior was to initialize all
loads in blacklisted functions, but apply normal shadow propagation
logic for all other operation.
This makes blacklist applicable in a wider range of situations.
It also makes code for blacklisted functions a lot shorter, which
works as yet another workaround for PR17409.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212268 91177308-0d34-0410-b5e6-96231b3b80d8
With this change all values passed through blacklisted functions
become fully initialized. Previous behavior was to initialize all
loads in blacklisted functions, but apply normal shadow propagation
logic for all other operation.
This makes blacklist applicable in a wider range of situations.
It also makes code for blacklisted functions a lot shorter, which
works as yet another workaround for PR17409.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212265 91177308-0d34-0410-b5e6-96231b3b80d8
See https://code.google.com/p/address-sanitizer/issues/detail?id=299 for the
original feature request.
Introduce llvm.asan.globals metadata, which Clang (or any other frontend)
may use to report extra information about global variables to ASan
instrumentation pass in the backend. This metadata replaces
llvm.asan.dynamically_initialized_globals that was used to detect init-order
bugs. llvm.asan.globals contains the following data for each global:
1) source location (file/line/column info);
2) whether it is dynamically initialized;
3) whether it is blacklisted (shouldn't be instrumented).
Source location data is then emitted in the binary and can be picked up
by ASan runtime in case it needs to print error report involving some global.
For example:
0x... is located 4 bytes to the right of global variable 'C::array' defined in '/path/to/file:17:8' (0x...) of size 40
These source locations are printed even if the binary doesn't have any
debug info.
This is an ABI-breaking change. ASan initialization is renamed to
__asan_init_v4(). Pre-built libraries compiled with older Clang will not work
with the fresh runtime.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212188 91177308-0d34-0410-b5e6-96231b3b80d8
This probably isn't necessary since msan started to unpoison the return
value shadow memory before all calls.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212061 91177308-0d34-0410-b5e6-96231b3b80d8
string_ostream is a safe and efficient string builder that combines opaque
stack storage with a built-in ostream interface.
small_string_ostream<bytes> additionally permits an explicit stack storage size
other than the default 128 bytes to be provided. Beyond that, storage is
transferred to the heap.
This convenient class can be used in most places an
std::string+raw_string_ostream pair or SmallString<>+raw_svector_ostream pair
would previously have been used, in order to guarantee consistent access
without byte truncation.
The patch also converts much of LLVM to use the new facility. These changes
include several probable bug fixes for truncated output, a programming error
that's no longer possible with the new interface.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211749 91177308-0d34-0410-b5e6-96231b3b80d8
Origin history should only be recorded for uninitialized values, because it is
meaningless otherwise. This change moves __msan_chain_origin to the runtime
library side and makes it conditional on the corresponding shadow value.
Previous code was correct, but _very_ inefficient.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211700 91177308-0d34-0410-b5e6-96231b3b80d8
Multiplication by an integer with a number of trailing zero bits leaves
the same number of lower bits of the result initialized to zero.
This change makes MSan take this into account in the case of multiplication by
a compile-time constant.
We don't handle the general, non-constant, case because
(a) it's not going to be cheap (computation-wise);
(b) multiplication by a partially uninitialized value in user code is
a bad idea anyway.
Constant case must be handled because it appears from LLVM optimization of a
completely valid user code, as the test case in compiler-rt demonstrates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211092 91177308-0d34-0410-b5e6-96231b3b80d8
Init-order and use-after-return modes can currently be enabled
by runtime flags. use-after-scope mode is not really working at the
moment.
The only problem I see is that users won't be able to disable extra
instrumentation for init-order and use-after-scope by a top-level Clang flag.
But this instrumentation was implicitly enabled for quite a while and
we didn't hear from users hurt by it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210924 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds a weak variant of the cmpxchg operation, as described
in C++11. A cmpxchg instruction with this modifier is permitted to
fail to store, even if the comparison indicated it should.
As a result, cmpxchg instructions must return a flag indicating
success in addition to their original iN value loaded. Thus, for
uniformity *all* cmpxchg instructions now return "{ iN, i1 }". The
second flag is 1 when the store succeeded.
At the DAG level, a new ATOMIC_CMP_SWAP_WITH_SUCCESS node has been
added as the natural representation for the new cmpxchg instructions.
It is a strong cmpxchg.
By default this gets Expanded to the existing ATOMIC_CMP_SWAP during
Legalization, so existing backends should see no change in behaviour.
If they wish to deal with the enhanced node instead, they can call
setOperationAction on it. Beware: as a node with 2 results, it cannot
be selected from TableGen.
Currently, no use is made of the extra information provided in this
patch. Test updates are almost entirely adapting the input IR to the
new scheme.
Summary for out of tree users:
------------------------------
+ Legacy Bitcode files are upgraded during read.
+ Legacy assembly IR files will be invalid.
+ Front-ends must adapt to different type for "cmpxchg".
+ Backends should be unaffected by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210903 91177308-0d34-0410-b5e6-96231b3b80d8
This is a minimal change to remove the header. I will remove the occurrences
of "using std::error_code" in a followup patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210803 91177308-0d34-0410-b5e6-96231b3b80d8
never be true in a well-defined context. The checking for null pointers
has been moved into the caller logic so it does not rely on undefined behavior.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210497 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a crash on MMX intrinsics, as well as a corner case in handling of
all unsigned pack intrinsics.
PR19953.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210454 91177308-0d34-0410-b5e6-96231b3b80d8
Instrumentation passes now use attributes
address_safety/thread_safety/memory_safety which are added by Clang frontend.
Clang parses the blacklist file and adds the attributes accordingly.
Currently blacklist is still used in ASan module pass to disable instrumentation
for certain global variables. We should fix this as well by collecting the
set of globals we're going to instrument in Clang and passing it to ASan
in metadata (as we already do for dynamically-initialized globals and init-order
checking).
This change also removes -tsan-blacklist and -msan-blacklist LLVM commandline
flags in favor of -fsanitize-blacklist= Clang flag.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210038 91177308-0d34-0410-b5e6-96231b3b80d8
Clang knows about the sanitizer blacklist and it makes no sense to
add global to the list of llvm.asan.dynamically_initialized_globals if it
will be blacklisted in the instrumentation pass anyway. Instead, we should
do as much blacklisting as possible (if not all) in the frontend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209790 91177308-0d34-0410-b5e6-96231b3b80d8
Don't assume that dynamically initialized globals are all initialized from
_GLOBAL__<module_name>I_ function. Instead, scan the llvm.global_ctors and
insert poison/unpoison calls to each function there.
Patch by Nico Weber!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209780 91177308-0d34-0410-b5e6-96231b3b80d8
Most importantly, it gives debug location info to the coverage callback.
This change also removes 2 cases of unnecessary setDebugLoc when IRBuilder
is created with the same debug location.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208767 91177308-0d34-0410-b5e6-96231b3b80d8
Pass::doInitialization is supposed to return False when it did not
change the program, not when a fatal error occurs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206975 91177308-0d34-0410-b5e6-96231b3b80d8
definition below all of the header #include lines, lib/Transforms/...
edition.
This one is tricky for two reasons. We again have a couple of passes
that define something else before the includes as well. I've sunk their
name macros with the DEBUG_TYPE.
Also, InstCombine contains headers that need DEBUG_TYPE, so now those
headers #define and #undef DEBUG_TYPE around their code, leaving them
well formed modular headers. Fixing these headers was a large motivation
for all of these changes, as "leaky" macros of this form are hard on the
modules implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206844 91177308-0d34-0410-b5e6-96231b3b80d8
This flag replaces inline instrumentation for checks and origin stores with
calls into MSan runtime library. This is a workaround for PR17409.
Disabled by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206585 91177308-0d34-0410-b5e6-96231b3b80d8
Also updated as many loops as I could find using df_begin/idf_begin -
strangely I found no uses of idf_begin. Is that just used out of tree?
Also a few places couldn't use df_begin because either they used the
member functions of the depth first iterators or had specific ordering
constraints (I added a comment in the latter case).
Based on a patch by Jim Grosbach. (Jim - you just had iterator_range<T>
where you needed iterator_range<idf_iterator<T>>)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206016 91177308-0d34-0410-b5e6-96231b3b80d8
This adds back r204781.
Original message:
Aliases are just another name for a position in a file. As such, the
regular symbol resolutions are not applied. For example, given
define void @my_func() {
ret void
}
@my_alias = alias weak void ()* @my_func
@my_alias2 = alias void ()* @my_alias
We produce without this patch:
.weak my_alias
my_alias = my_func
.globl my_alias2
my_alias2 = my_alias
That is, in the resulting ELF file my_alias, my_func and my_alias are
just 3 names pointing to offset 0 of .text. That is *not* the
semantics of IR linking. For example, linking in a
@my_alias = alias void ()* @other_func
would require the strong my_alias to override the weak one and
my_alias2 would end up pointing to other_func.
There is no way to represent that with aliases being just another
name, so the best solution seems to be to just disallow it, converting
a miscompile into an error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204934 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r204781.
I will follow up to with msan folks to see what is what they
were trying to do with aliases to weak aliases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204784 91177308-0d34-0410-b5e6-96231b3b80d8
Aliases are just another name for a position in a file. As such, the
regular symbol resolutions are not applied. For example, given
define void @my_func() {
ret void
}
@my_alias = alias weak void ()* @my_func
@my_alias2 = alias void ()* @my_alias
We produce without this patch:
.weak my_alias
my_alias = my_func
.globl my_alias2
my_alias2 = my_alias
That is, in the resulting ELF file my_alias, my_func and my_alias are
just 3 names pointing to offset 0 of .text. That is *not* the
semantics of IR linking. For example, linking in a
@my_alias = alias void ()* @other_func
would require the strong my_alias to override the weak one and
my_alias2 would end up pointing to other_func.
There is no way to represent that with aliases being just another
name, so the best solution seems to be to just disallow it, converting
a miscompile into an error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204781 91177308-0d34-0410-b5e6-96231b3b80d8