The test case feeds the following into InstCombine's visitSelect:
%tobool8 = icmp ne i32 0, 0
%phitmp = select i1 %tobool8, i32 3, i32 0
Then instcombine replaces the right side of the switch with 0, doesn't notice
that nothing changes and tries again indefinitely.
This fixes PR12897.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157587 91177308-0d34-0410-b5e6-96231b3b80d8
Attribute bits above 1<<30 are now encoded correctly. Additionally,
the encoding/decoding functionality has been hoisted to helper functions
in Attributes.h in an effort to help the encoding/decoding to stay in
sync with the Attribute bitcode definitions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157581 91177308-0d34-0410-b5e6-96231b3b80d8
Implemented IntItem - the wrapper around APInt. Why not to use APInt item directly right now?
1. It will very difficult to implement case ranges as series of small patches. We got several large and heavy patches. Each patch will about 90-120 kb. If you replace ConstantInt with APInt in SwitchInst you will need to changes at the same time all Readers,Writers and absolutely all passes that uses SwitchInst.
2. We can implement APInt pool inside and save memory space. E.g. we use several switches that works with 256 bit items (switch on signatures, or strings). We can avoid value duplicates in this case.
3. IntItem can be easyly easily replaced with APInt.
4. Currenly we can interpret IntItem both as ConstantInt and as APInt. It allows to provide SwitchInst methods that works with ConstantInt for non-updated passes.
Why I need it right now? Currently I need to update SimplifyCFG pass (EqualityComparisons). I need to work with APInts directly a lot, so peaces of code
ConstantInt *V = ...;
if (V->getValue().ugt(AnotherV->getValue()) {
...
}
will look awful. Much more better this way:
IntItem V = ConstantIntVal->getValue();
if (AnotherV < V) {
}
Of course any reviews are welcome.
P.S.: I'm also going to rename ConstantRangesSet to IntegersSubset, and CRSBuilder to IntegersSubsetMapping (allows to map individual subsets of integers to the BasicBlocks).
Since in future these classes will founded on APInt, it will possible to use them in more generic ways.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157576 91177308-0d34-0410-b5e6-96231b3b80d8
replicating the code for every place it's needed, we instead generate a function
that does that for us. This function is local to the executable, so there
shouldn't be any writing violations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157564 91177308-0d34-0410-b5e6-96231b3b80d8
making it stronger and more sane.
Delete the code from tblgen that produced the old code.
Besides being a path forward in intrinsic sanity, this also eliminates a bunch of
machine generated code that was compiled into Function.o
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157545 91177308-0d34-0410-b5e6-96231b3b80d8
definition in the map before calling itself to retrieve the
DIE for the declaration. Without this change, if this causes
getOrCreateSubprogramDIE to be recursively called on the definition,
it will create multiple DIEs for that definition. Fixes PR12831.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157541 91177308-0d34-0410-b5e6-96231b3b80d8
The only missing part is insert(), which uses a pair of parameters and I haven't
figured out how to convert it to rvalue references. It's now possible to use a
DenseMap with std::unique_ptr values :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157539 91177308-0d34-0410-b5e6-96231b3b80d8
This is obviosly right but I don't see how to do this with proper vector
iterators without building a horrible mess of workarounds.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157526 91177308-0d34-0410-b5e6-96231b3b80d8
SimplifyCFG tends to form a lot of 2-3 case switches when merging branches. Move
the most likely condition to the front so it is checked first and the others can
be skipped. This is currently not as effective as it could be because SimplifyCFG
destroys profiling metadata when merging branches and switches. Merging branch
weight metadata is tricky though.
This code touches at most 3 cases so I didn't use a proper sorting algorithm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157521 91177308-0d34-0410-b5e6-96231b3b80d8
then it doesn't alter the instructions composing it, however it would continue
to move the instructions to just before the expression root. Ensure it doesn't
move them either, so now it really does nothing if there is nothing to do. That
commit also ensured that nsw etc flags weren't cleared if the expression was not
being changed. Tweak this a bit so that it doesn't clear flags on the initial
part of a computation either if that part didn't change but later bits did.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157518 91177308-0d34-0410-b5e6-96231b3b80d8
are passed in. However, those arguments may be in a write-protected area, as far
as the runtime library is concerned. For instance, the data could be placed into
a 'linkedit' section, which isn't writable. Emit the code from
llvm_gcda_increment_indirect_counter directly into the function instead.
Note: The code for this is ugly, and can lead to bloat. We should look into
simplifying this code instead of having all of these branches.
<rdar://problem/11181370>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157505 91177308-0d34-0410-b5e6-96231b3b80d8