callee-saved registers at the end of the lists. Also prefer to avoid using
the low registers that are in register subclasses required by certain
instructions, so that those registers will more likely be available when needed.
This change makes a huge improvement in spilling in some cases. Thanks to
Jakob for helping me realize the problem.
Most of this patch is fixing the testsuite. There are quite a few places
where we're checking for specific registers. I changed those to wildcards
in places where that doesn't weaken the tests. The spill-q.ll and
thumb2-spill-q.ll tests stopped spilling with this change, so I added a bunch
of live values to force spills on those tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116055 91177308-0d34-0410-b5e6-96231b3b80d8
allow target to correctly compute latency for cases where static scheduling
itineraries isn't sufficient. e.g. variable_ops instructions such as
ARM::ldm.
This also allows target without scheduling itineraries to compute operand
latencies. e.g. X86 can return (approximated) latencies for high latency
instructions such as division.
- Compute operand latencies for those defined by load multiple instructions,
e.g. ldm and those used by store multiple instructions, e.g. stm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115755 91177308-0d34-0410-b5e6-96231b3b80d8
LDM/STM instructions can run one cycle faster on some ARM processors if the
memory address is 64-bit aligned. Radar 8489376.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115047 91177308-0d34-0410-b5e6-96231b3b80d8
cost modeling for if-conversion. Now if only we had a way to estimate the misprediction probability.
Adjsut CodeGen/ARM/ifcvt10.ll. The pipeline on Cortex-A8 is long enough that it is still profitable
to predicate an ldm, but the shorter pipeline on Cortex-A9 makes it unprofitable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114995 91177308-0d34-0410-b5e6-96231b3b80d8
Rather than having arbitrary cutoffs, actually try to cost model the conversion.
For now, the constants are tuned to more or less match our existing behavior, but these will be
changed to reflect realistic values as this work proceeds.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114973 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts revision 114633. It was breaking llvm-gcc-i386-linux-selfhost.
It seems there is a downstream bug that is exposed by
-cgp-critical-edge-splitting=0. When that bug is fixed, this patch can go back
in.
Note that the changes to tailcallfp2.ll are not reverted. They were good are
required.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114859 91177308-0d34-0410-b5e6-96231b3b80d8
between the high and low registers for prologue/epilogue code. This was
a Darwin-only thing that wasn't providing a realistic benefit anymore.
Combining the save areas simplifies the compiler code and results in better
ARM/Thumb2 codegen.
For example, previously we would generate code like:
push {r4, r5, r6, r7, lr}
add r7, sp, #12
stmdb sp!, {r8, r10, r11}
With this change, we combine the register saves and generate:
push {r4, r5, r6, r7, r8, r10, r11, lr}
add r7, sp, #12
rdar://8445635
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114340 91177308-0d34-0410-b5e6-96231b3b80d8
value should be in GPRs when it's going to be used as a scalar, and we use
VMOVRRD to make that happen, but if the value is converted back to a vector
we need to fold to a simple bit_convert. Radar 8407927.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114233 91177308-0d34-0410-b5e6-96231b3b80d8
legacy asm printer uses instructions of the form, "mov r0, r0, lsl #3", while
the MC-instruction printer uses the form "lsl r0, r0, #3". The latter mnemonic
is correct and preferred according the ARM documentation (A8.6.98). The former
are pseudo-instructions for the latter.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114221 91177308-0d34-0410-b5e6-96231b3b80d8
encountered while building llvm-gcc for arm. This is probably the same issue
that the ppc buildbot hit. llvm::prior works on a MachineBasicBlock::iterator,
not a plain MachineInstr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113983 91177308-0d34-0410-b5e6-96231b3b80d8
backing out following to get it back to green,
so I can investigate in peace:
svn merge -c -113840 llvm/test/CodeGen/ARM/arm-and-tst-peephole.ll
svn merge -c -113876 -c -113839 llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113980 91177308-0d34-0410-b5e6-96231b3b80d8
to expose greater opportunities for store narrowing in codegen. This patch fixes a potential
infinite loop in instcombine caused by one of the introduced transforms being overly aggressive.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113763 91177308-0d34-0410-b5e6-96231b3b80d8
to use AddrMode4, there was a count of the registers stored in one of the
operands. I changed that to just count the operands but forgot to adjust for
the size of D registers. This was noticed by Evan as a performance problem
but it is a potential correctness bug as well, since it is possible that this
could merge a base update with a non-matching immediate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113576 91177308-0d34-0410-b5e6-96231b3b80d8
take multiple cycles to decode.
For the current if-converter clients (actually only ARM), the instructions that
are predicated on false are not nops. They would still take machine cycles to
decode. Micro-coded instructions such as LDM / STM can potentially take multiple
cycles to decode. If-converter should take treat them as non-micro-coded
simple instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113570 91177308-0d34-0410-b5e6-96231b3b80d8
vabd intrinsic and add and/or zext operations. In the case of vaba, this
also avoids the need for a DAG combine pattern to combine vabd with add.
Update tests. Auto-upgrade the old intrinsics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112941 91177308-0d34-0410-b5e6-96231b3b80d8
add, and subtract operations with zero-extended or sign-extended vectors.
Update tests. Add auto-upgrade support for the old intrinsics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112773 91177308-0d34-0410-b5e6-96231b3b80d8
int x(int t) {
if (t & 256)
return -26;
return 0;
}
We generate this:
tst.w r0, #256
mvn r0, #25
it eq
moveq r0, #0
while gcc generates this:
ands r0, r0, #256
it ne
mvnne r0, #25
bx lr
Scandalous really!
During ISel time, we can look for this particular pattern. One where we have a
"MOVCC" that uses the flag off of a CMPZ that itself is comparing an AND
instruction to 0. Something like this (greatly simplified):
%r0 = ISD::AND ...
ARMISD::CMPZ %r0, 0 @ sets [CPSR]
%r0 = ARMISD::MOVCC 0, -26 @ reads [CPSR]
All we have to do is convert the "ISD::AND" into an "ARM::ANDS" that sets [CPSR]
when it's zero. The zero value will all ready be in the %r0 register and we only
need to change it if the AND wasn't zero. Easy!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112664 91177308-0d34-0410-b5e6-96231b3b80d8