the output to the correct register. Fixes a hidden problem uncovered
by the last patch where we'd try to DAG combine our MVT::Other node
oddly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121358 91177308-0d34-0410-b5e6-96231b3b80d8
Added test to check bl __aeabi_read_tp gets emitted properly for ELF/ASM
as well as ELF/OBJ (including fixup)
Also added support for ELF::R_ARM_TLS_IE32
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121312 91177308-0d34-0410-b5e6-96231b3b80d8
vpush instructions to save / restore VFP / NEON registers like this:
vpush {d8,d10,d11}
vpop {d8,d10,d11}
vpush and vpop do not allow gaps in the register list.
rdar://8728956
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121197 91177308-0d34-0410-b5e6-96231b3b80d8
(if available) as we go so that we get simple constantexprs not insane ones.
This fixes the failure of clang/test/CodeGenCXX/virtual-base-ctor.cpp
that the previous iteration of this patch had.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121111 91177308-0d34-0410-b5e6-96231b3b80d8
as llc + llvm-mc. This time ELF is not changed and I tested that llvm-gcc
bootstrap on darwin10 using darwin9's assembler and linker.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121006 91177308-0d34-0410-b5e6-96231b3b80d8
memcpy's like:
memcpy(A, B)
memcpy(A, C)
we cannot delete the first memcpy as dead if A and C might be aliases.
If so, we actually get:
memcpy(A, B)
memcpy(A, A)
which is not correct to transform into:
memcpy(A, A)
This patch was heavily influenced by Jakub Staszak's patch in PR8728, thanks
Jakub!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120974 91177308-0d34-0410-b5e6-96231b3b80d8
difficult on current ARM implementations for a few reasons.
1. Even though a single vmla has latency that is one cycle shorter than a pair
of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause
additional pipeline stall. So it's frequently better to single codegen
vmul + vadd.
2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to
stall for 4 cycles. We need to schedule them apart.
3. A vmla followed vmla is a special case. Obvious issuing back to back RAW
vmla + vmla is very bad. But this isn't ideal either:
vmul
vadd
vmla
Instead, we want to expand the second vmla:
vmla
vmul
vadd
Even with the 4 cycle vmul stall, the second sequence is still 2 cycles
faster.
Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough
but it isn't the optimial solution. This patch attempts to make it possible to
use vmla / vmls in cases where it is profitable.
A. Add missing isel predicates which cause vmla to be codegen'ed.
B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to
compute a fmul and a fmla.
C. Add additional isel checks for vmla, avoid cases where vmla is feeding into
fp instructions (except for the #3 exceptional case).
D. Add ARM hazard recognizer to model the vmla / vmls hazards.
E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the
vmla / vmls will trigger one of the special hazards.
Work in progress, only A+B are enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120960 91177308-0d34-0410-b5e6-96231b3b80d8
Also add asserts that the indices are valid in InsertValueInst::init(). ExtractValueInst already asserts when constructed with invalid indices.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120956 91177308-0d34-0410-b5e6-96231b3b80d8
result. This allows us to compile:
void *test12(long count) {
return new int[count];
}
into:
test12:
movl $4, %ecx
movq %rdi, %rax
mulq %rcx
movq $-1, %rdi
cmovnoq %rax, %rdi
jmp __Znam ## TAILCALL
instead of:
test12:
movl $4, %ecx
movq %rdi, %rax
mulq %rcx
seto %cl
testb %cl, %cl
movq $-1, %rdi
cmoveq %rax, %rdi
jmp __Znam
Of course it would be even better if the regalloc inverted the cmov to 'cmovoq',
which would eliminate the need for the 'movq %rdi, %rax'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120936 91177308-0d34-0410-b5e6-96231b3b80d8
backend that they were all implemented except umul. This one fell back
to the default implementation that did a hi/lo multiply and compared the
top. Fix this to check the overflow flag that the 'mul' instruction
sets, so we can avoid an explicit test. Now we compile:
void *func(long count) {
return new int[count];
}
into:
__Z4funcl: ## @_Z4funcl
movl $4, %ecx ## encoding: [0xb9,0x04,0x00,0x00,0x00]
movq %rdi, %rax ## encoding: [0x48,0x89,0xf8]
mulq %rcx ## encoding: [0x48,0xf7,0xe1]
seto %cl ## encoding: [0x0f,0x90,0xc1]
testb %cl, %cl ## encoding: [0x84,0xc9]
movq $-1, %rdi ## encoding: [0x48,0xc7,0xc7,0xff,0xff,0xff,0xff]
cmoveq %rax, %rdi ## encoding: [0x48,0x0f,0x44,0xf8]
jmp __Znam ## TAILCALL
instead of:
__Z4funcl: ## @_Z4funcl
movl $4, %ecx ## encoding: [0xb9,0x04,0x00,0x00,0x00]
movq %rdi, %rax ## encoding: [0x48,0x89,0xf8]
mulq %rcx ## encoding: [0x48,0xf7,0xe1]
testq %rdx, %rdx ## encoding: [0x48,0x85,0xd2]
movq $-1, %rdi ## encoding: [0x48,0xc7,0xc7,0xff,0xff,0xff,0xff]
cmoveq %rax, %rdi ## encoding: [0x48,0x0f,0x44,0xf8]
jmp __Znam ## TAILCALL
Other than the silly seto+test, this is using the o bit directly, so it's going in the right
direction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120935 91177308-0d34-0410-b5e6-96231b3b80d8
- Also adds a new POPCNT subtarget feature that is currently enabled if the target
supports SSE4.2 (nehalem) or SSE4A (barcelona).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120917 91177308-0d34-0410-b5e6-96231b3b80d8
foo = a - b
.long foo
instead of just
.long a - b
First, on darwin9 64 bits the assembler produces the wrong result. Second,
if "a" is the end of the section all darwin assemblers (9, 10 and mc) will not
consider a - b to be a constant but will if the dummy foo is created.
Split how we handle these cases. The first one is something MC should take care
of. The second one has to be handled by the caller.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120889 91177308-0d34-0410-b5e6-96231b3b80d8
doing that if the target is darwin10 or newer.
This fixes
*) Direct object emission was producing objects without the workaround on
darwin9.
*) Assembly printing was producing objects with the workaround on linux.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120866 91177308-0d34-0410-b5e6-96231b3b80d8