All targets are now adding return value registers as implicit uses on
return instructions, and there is no longer a need for the live out
lists.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174417 91177308-0d34-0410-b5e6-96231b3b80d8
- recognize string "{memory}" in the MI generation
- mark as mayload/maystore when there's a memory clobber constraint.
PR14859.
Patch by Krzysztof Parzyszek
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172228 91177308-0d34-0410-b5e6-96231b3b80d8
When calling hasProperty() on an instruction inside a bundle, it should
always behave as if IgnoreBundle was passed, and just return properties
for the current instruction.
Only attempt to aggregate bundle properties whan asked about the bundle
header.
The assertion fires on existing ARM test cases without this fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172082 91177308-0d34-0410-b5e6-96231b3b80d8
The bundle flags are used by MachineBasicBlock::print(), they don't need
to clutter up individual MachineInstrs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171986 91177308-0d34-0410-b5e6-96231b3b80d8
It is possible to build MI bundles that don't begin with a BUNDLE
header. Add support for such bundles, counting all instructions inside
the bundle.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171985 91177308-0d34-0410-b5e6-96231b3b80d8
The series of patches leading up to this one makes llc -O0 run 8% faster.
When deallocating a MachineFunction, there is no need to visit all
MachineInstr and MachineOperand objects to deallocate them. All their
memory come from a BumpPtrAllocator that is about to be purged, and they
have empty destructors anyway.
This only applies when deallocating the MachineFunction.
DeleteMachineInstr() should still be used to recycle MI memory during
the codegen passes.
Remove the LeakDetector support for MachineInstr. I've never seen it
used before, and now it definitely doesn't work. With this patch, leaked
MachineInstrs would be much less of a problem since all of their memory
will be reclaimed by ~MachineFunction().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171599 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of an std::vector<MachineOperand>, use MachineOperand arrays
from an ArrayRecycler living in MachineFunction.
This has several advantages:
- MachineInstr now has a trivial destructor, making it possible to
delete them in batches when destroying MachineFunction. This will be
enabled in a later patch.
- Bypassing malloc() and free() can be faster, depending on the system
library.
- MachineInstr objects and their operands are allocated from the same
BumpPtrAllocator, so they will usually be next to each other in
memory, providing better locality of reference.
- Reduce MachineInstr footprint. A std::vector is 24 bytes, the new
operand array representation only uses 8+4+1 bytes in MachineInstr.
- Better control over operand array reallocations. In the old
representation, the use-def chains would be reordered whenever a
std::vector reached its capacity. The new implementation never changes
the use-def chain order.
Note that some decisions in the code generator depend on the use-def
chain orders, so this patch may cause different assembly to be produced
in a few cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171598 91177308-0d34-0410-b5e6-96231b3b80d8
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
Back when this exception was added, it was skipping a lot more code, but
now it just looks like a premature optimization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170989 91177308-0d34-0410-b5e6-96231b3b80d8
The representation of the Operands array is going to change soon so it
can be allocated from a BumpPtrAllocator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170988 91177308-0d34-0410-b5e6-96231b3b80d8
Instructions that are inserted in a basic block can still be decorated
with addOperand(MO).
Make the two-argument addOperand() function contain the actual
implementation. This function will now always have a valid MF reference
that it can use for memory allocation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170798 91177308-0d34-0410-b5e6-96231b3b80d8
This function is often used to decorate dangling instructions, so a
context reference is required to allocate memory for the operands.
Also add a corresponding MachineInstrBuilder method.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170797 91177308-0d34-0410-b5e6-96231b3b80d8
The bundle_iterator::operator++ function now doesn't need to dig out the
basic block and check against end(). It can use the isBundledWithSucc()
flag to find the last bundled instruction safely.
Similarly, MachineInstr::isBundled() no longer needs to look at
iterators etc. It only has to look at flags.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170473 91177308-0d34-0410-b5e6-96231b3b80d8
Now that the bundle flag aware APIs are all in place, it is possible to
continuously verify the flag consistency.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170465 91177308-0d34-0410-b5e6-96231b3b80d8
The bundle-related MI flags need to be kept in sync with the neighboring
instructions. Don't allow the bulk flag-setting setFlags() function to
change them.
Also don't copy MI flags when cloning an instruction. The clone's bundle
flags will be set when it is explicitly inserted into a bundle.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170459 91177308-0d34-0410-b5e6-96231b3b80d8
Most code is oblivious to bundles and uses the MBB::iterator which only
visits whole bundles. MBB::erase() operates on whole bundles at a time
as before.
MBB::remove() now refuses to remove bundled instructions. It is not safe
to remove all instructions in a bundle without deleting them since there
is no way of returning pointers to all the removed instructions.
MBB::remove_instr() and MBB::erase_instr() will now update bundle flags
correctly, lifting individual instructions out of bundles while leaving
the remaining bundle intact.
The MachineInstr convenience functions are updated so
eraseFromParent() erases a whole bundle as before
eraseFromBundle() erases a single instruction, leaving the rest of its bundle.
removeFromParent() refuses to operate on bundled instructions, and
removeFromBundle() lifts a single instruction out of its bundle.
These functions will no longer accidentally split or coalesce bundles -
bundle flags are updated to preserve the existing bundling, and explicit
bundleWith* / unbundleFrom* functions should be used to change the
instruction bundling.
This API update is still a work in progress. I am going to update APIs
first so they maintain bundle flags automatically when possible. Then
I'll add stricter verification of the bundle flags.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170384 91177308-0d34-0410-b5e6-96231b3b80d8
This is still a work in progress. The purpose is to make bundling and
unbundling operations explicit, and to catch errors where bundles are
broken or created inadvertently.
The old IsInsideBundle flag is replaced by two MI flags: BundledPred
which has the same meaning as IsInsideBundle, and BundledSucc which is
set on instructions that are bundled with a successor. Having two flags
provdes redundancy to detect when a bundle is inadvertently torn by a
splice() or insert(), and it makes it possible to write bundle iterators
that don't need to peek at adjacent instructions.
The new flags can't be manipulated directly (once setIsInsideBundle is
gone). Instead there are MI functions to make and break bundle bonds.
The setIsInsideBundle function will be removed in a future commit. It
should be replaced by bundleWithPred().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169583 91177308-0d34-0410-b5e6-96231b3b80d8
A MachineInstr can only ever be constructed by CreateMachineInstr() and
CloneMachineInstr(), and those factories don't use the removed
constructors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169395 91177308-0d34-0410-b5e6-96231b3b80d8
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
- BlockAddress has no support of BA + offset form and there is no way to
propagate that offset into machine operand;
- Add BA + offset support and a new interface 'getTargetBlockAddress' to
simplify target block address forming;
- All targets are modified to use new interface and X86 backend is enhanced to
support BA + offset addressing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163743 91177308-0d34-0410-b5e6-96231b3b80d8
The MachineOperand::TiedTo field was maintained, but not used.
This patch enables it in isRegTiedToDefOperand() and
isRegTiedToUseOperand() which are the actual functions use by the
register allocator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163153 91177308-0d34-0410-b5e6-96231b3b80d8
After much agonizing, use a full 4 bits of precious MachineOperand space
to encode this. This uses existing padding, and doesn't grow
MachineOperand beyond its current 32 bytes.
This allows tied defs among the first 15 operands on a normal
instruction, just like the current MCInstrDesc constraint encoding.
Inline assembly needs to be able to tie more than the first 15 operands,
and gets special treatment.
Tied uses can appear beyond 15 operands, as long as they are tied to a
def that's in range.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163151 91177308-0d34-0410-b5e6-96231b3b80d8
Manage tied operands entirely internally to MachineInstr. This makes it
possible to change the representation of tied operands, as I will do
shortly.
The constraint that tied uses and defs must be in the same order was too
restrictive.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163021 91177308-0d34-0410-b5e6-96231b3b80d8
When a MachineInstr is constructed, its implicit operands are added
first, then the explicit operands are inserted before the implicits.
MCInstrDesc has oprand flags like early clobber and operand ties that
apply to the explicit operands.
Don't look at those flags when the implicit operands are first added in
the explicit operands's positions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162910 91177308-0d34-0410-b5e6-96231b3b80d8
Ordered memory operations are more constrained than volatile loads and
stores because they must be ordered with respect to all other memory
operations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162861 91177308-0d34-0410-b5e6-96231b3b80d8
It is technically allowed to move a normal load across a volatile load,
but probably not a good idea.
It is not allowed to move a load across an atomic load with
Ordering > Monotonic, and we model those with MOVolatile as well.
I recently removed the mayStore flag from atomic load instructions, so
they don't need a pseudo-opcode. This patch makes up for the difference.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162857 91177308-0d34-0410-b5e6-96231b3b80d8
The isTied bit is set automatically when a tied use is added and
MCInstrDesc indicates a tied operand. The tie is broken when one of the
tied operands is removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162814 91177308-0d34-0410-b5e6-96231b3b80d8
While in SSA form, a MachineInstr can have pairs of tied defs and uses.
The tied operands are used to represent read-modify-write operands that
must be assigned the same physical register.
Previously, tied operand pairs were computed from fixed MCInstrDesc
fields, or by using black magic on inline assembly instructions.
The isTied flag makes it possible to add tied operands to any
instruction while getting rid of (some of) the inlineasm magic.
Tied operands on normal instructions are needed to represent predicated
individual instructions in SSA form. An extra <tied,imp-use> operand is
required to represent the output value when the instruction predicate is
false.
Adding a predicate to:
%vreg0<def> = ADD %vreg1, %vreg2
Will look like:
%vreg0<tied,def> = ADD %vreg1, %vreg2, pred:3, %vreg7<tied,imp-use>
The virtual register %vreg7 is the value given to %vreg0 when the
predicate is false. It will be assigned the same physreg as %vreg0.
This commit adds the isTied flag and sets it based on MCInstrDesc when
building an instruction. The flag is not used for anything yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162774 91177308-0d34-0410-b5e6-96231b3b80d8
Register operands are manipulated by a lot of target-independent code,
and it is not always possible to preserve target flags. That means it is
not safe to use target flags on register operands.
None of the targets in the tree are using register operand target flags.
External targets should be using immediate operands to annotate
instructions with operand modifiers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162770 91177308-0d34-0410-b5e6-96231b3b80d8
Register MachineOperands are kept in linked lists accessible via MRI's
reg_iterator interfaces. The linked list management was handled partly
by MachineOperand methods, partly by MRI methods.
Move all of the list management into MRI, delete
MO::AddRegOperandToRegInfo() and MO::RemoveRegOperandFromRegInfo().
Be more explicit about handling the cases where an MRI pointer isn't
available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161632 91177308-0d34-0410-b5e6-96231b3b80d8
A target index operand looks a lot like a constant pool reference, but
it is completely target-defined. It contains the 8-bit TargetFlags, a
32-bit index, and a 64-bit offset. It is preserved by all code generator
passes.
TargetIndex operands can be used to carry target-specific information in
cases where immediate operands won't suffice.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161441 91177308-0d34-0410-b5e6-96231b3b80d8
hash_value overload for MachineOperands. This addresses a FIXME
sufficient for me to remove it, and cleans up the code nicely too.
The important changes to the hashing logic:
- TargetFlags are now included in all of the hashes. These were complete
missed.
- Register operands have their subregisters and whether they are a def
included in the hash.
- We now actually hash all of the operand types. Previously, many
operand types were simply *dropped on the floor*. For example:
- Floating point immediates
- Large integer immediates (>64-bit)
- External globals!
- Register masks
- Metadata operands
- It removes the offset from the block-address hash; I'm a bit
suspicious of this, but isIdenticalTo doesn't consider the offset for
black addresses.
Any patterns involving these entities could have triggered extreme
slowdowns in MachineCSE or PHIElimination. Let me know if there are PRs
you think might be closed now... I'm looking myself, but I may miss
them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159743 91177308-0d34-0410-b5e6-96231b3b80d8
broken. This patch fixes the superficial problems which lead to the
intractably slow compile times reported in PR13225.
The specific issue is that we were failing to include the *offset* of
a global variable in the hash code. Oops. This would in turn cause all
MIs which were only distinguishable due to operating on different
offsets of a global variable to produce identical hash functions. In
some of the test cases attached to the PR I saw hash table activity
where there were O(1000) probes-per-lookup *on average*. A very few
entries were responsible for most of these probes.
There is still quite a bit more to do here. The ad-hoc layering of data
in MachineOperands makes them *extremely* brittle to hash correctly.
We're missing quite a few other cases, the only ones I've fixed here are
the specific MO types which were allowed through the assert() in
getOffset().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159741 91177308-0d34-0410-b5e6-96231b3b80d8
Also allow trailing register mask operands on non-variadic both
MachineSDNodes and MachineInstrs.
The extra physreg RegisterSDNode operands are added to the MI as
<imp-use> operands. This makes it possible to have non-variadic call
instructions.
Call and return instructions really are non-variadic, the argument
registers should only be used implicitly - they are not part of the
encoding.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159727 91177308-0d34-0410-b5e6-96231b3b80d8