bitcode writer would generate abbrev records saying that the abbrev should be
filled with fixed zero-bit bitfields (this happens in the .bc writer when
the number of types used in a module is exactly one, since log2(1) == 0).
In this case, just handle it as a literal zero. We can't "just fix" the writer
without breaking compatibility with existing bc files, so have the abbrev reader
do the substitution.
Strengthen the assert in read to reject reads of zero bits so we catch such
crimes in the future, and remove the special case designed to handle this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174801 91177308-0d34-0410-b5e6-96231b3b80d8
instead of always 32-bits at a time) with two changes:
1. Make Read(0) always return zero without affecting the state of our cursor.
2. Hack word_t to always be 32 bits, as staging.
These two caveats will change shortly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174800 91177308-0d34-0410-b5e6-96231b3b80d8
Handle chains in which the same offset is used for both loads and
stores to the same array.
Fixes rdar://11410078.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174789 91177308-0d34-0410-b5e6-96231b3b80d8
This uses a liveness algorithm that does not depend on data from the
LiveVariables analysis, it is the first step towards removing
LiveVariables completely.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174774 91177308-0d34-0410-b5e6-96231b3b80d8
check_cxx_symbol_exists requires CMake 2.8.6, so even though I
recommended it to Owen it's probably better to stay away for now.
This check is not technically correct because we're checking <math.h>
but then using <cmath> in the actual code, but if we run into problems we
can do the same sort of dance as isinf() and isnan() where we check /both/
headers and then write a wrapper header around them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174773 91177308-0d34-0410-b5e6-96231b3b80d8
to use -Wfoo instead of -Wno-foo. This works around a bug in some versions of
gcc, where it will silently accept an unknown -Wno-foo option, but will
generate an error for a compile which uses -Wno-foo if that compile also
triggers any warnings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174770 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a couple of bugs and incorrect assumptions,
in total four more piglit tests now pass.
v2: fix small bug in the dominator updating
Patch by: Christian König
Signed-off-by: Christian König <christian.koenig@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174762 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by: Christian König
Intersecting loop handling was wrong.
Signed-off-by: Christian König <christian.koenig@amd.com>
Tested-by: Michel Dänzer <michel.daenzer@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174761 91177308-0d34-0410-b5e6-96231b3b80d8
Otherwise we sometimes produce invalid code.
Patch by: Christian König
Signed-off-by: Christian König <christian.koenig@amd.com>
Tested-by: Michel Dänzer <michel.daenzer@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174760 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts r171041. This was a nice idea that didn't work out well.
Clang warnings need to be associated with warning groups so that they can
be selectively disabled, promoted to errors, etc. This simplistic patch didn't
allow for that. Enhancing it to provide some way for the backend to specify
a front-end warning type seems like overkill for the few uses of this, at
least for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174748 91177308-0d34-0410-b5e6-96231b3b80d8
same so we put in the comment field an indicator when we think we are
emitting the 16 bit version. For the direct object emitter, the difference is
important as well as for other passes which need an accurate count of
program size. There will be other similar putbacks to this for various
instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174747 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, even when a pre-increment load or store was generated,
we often needed to keep a copy of the original base register for use
with other offsets. If all of these offsets are constants (including
the offset which was combined into the addressing mode), then this is
clearly unnecessary. This change adjusts these other offsets to use the
new incremented address.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174746 91177308-0d34-0410-b5e6-96231b3b80d8
This is a follow-up to the cost-model change in r174713 which splits
the cost of a memory operation between the address computation and the
actual memory access. In r174713, this cost is always added to the
memory operation cost, and so BBVectorize will do the same.
Currently, this new cost function is used only by ARM, and I don't
have any ARM test cases for BBVectorize. Assistance in generating some
good ARM test cases for BBVectorize would be greatly appreciated!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174743 91177308-0d34-0410-b5e6-96231b3b80d8
Aside from the question of whether we report a warning or an error when we
can't satisfy a requested stack object alignment, the current implementation
of this is not good. We're not providing any source location in the diagnostics
and the current warning is not connected to any warning group so you can't
control it. We could improve the source location somewhat, but we can do a
much better job if this check is implemented in the front-end, so let's do that
instead. <rdar://problem/13127907>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174741 91177308-0d34-0410-b5e6-96231b3b80d8
This updates the current references to links that work for me.
In the future, we should update the list of references itself to provide
information on newer architecture variants.
Thanks to Sean Silva for pointing out that the current links were broken!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174739 91177308-0d34-0410-b5e6-96231b3b80d8
Thanks to help from Nadav and Hal, I have a more reasonable (and even
correct!) approach. This specifically penalizes the insertelement
and extractelement operations for the performance hit that will occur
on PowerPC processors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174725 91177308-0d34-0410-b5e6-96231b3b80d8
isn't using the default calling convention. However, if the transformation is
from a call to inline IR, then the calling convention doesn't matter.
rdar://13157990
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174724 91177308-0d34-0410-b5e6-96231b3b80d8
of lines which weren't being explicitly looked at and were printing incorrect results. These
values clearly must lie within 32 bits, so the casts are definitely safe.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174717 91177308-0d34-0410-b5e6-96231b3b80d8
Adds a function to target transform info to query for the cost of address
computation. The cost model analysis pass now also queries this interface.
The code in LoopVectorize adds the cost of address computation as part of the
memory instruction cost calculation. Only there, we know whether the instruction
will be scalarized or not.
Increase the penality for inserting in to D registers on swift. This becomes
necessary because we now always assume that address computation has a cost and
three is a closer value to the architecture.
radar://13097204
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174713 91177308-0d34-0410-b5e6-96231b3b80d8
Attribute references are of this form:
define void @foo() #0#1#2 { ... }
Parse them for function attributes. If there's more than one reference, then
they are merged together.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174697 91177308-0d34-0410-b5e6-96231b3b80d8
allowed size for the instruction. This code uses RegScavenger to fix this.
We sometimes need 2 registers for Mips16 so we must handle things
differently than how register scavenger is normally used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174696 91177308-0d34-0410-b5e6-96231b3b80d8
The functionality of ParseOptionalFuncAttrs was there in
ParseFnAttributeValuePairs. So just use that instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174686 91177308-0d34-0410-b5e6-96231b3b80d8
syms before constructing the compile units so we're not emitting
section references to sections not there already.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174663 91177308-0d34-0410-b5e6-96231b3b80d8
Add #include <unistd.h> to OProfileWrapper.cpp. This provides the declarations for 'read' and 'close' that are otherwise missing, and result in 'error: <foo> was not declared in this scope'.
This matches the issue as reported in bug 15055 "Can no longer compile LLVM with --with-oprofile"
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174661 91177308-0d34-0410-b5e6-96231b3b80d8
Certain vector operations don't vectorize well with the current
PowerPC implementation. Element insert/extract performs poorly
without VSX support because Altivec requires going through memory.
SREM, UREM, and VSELECT all produce bad scalar code.
There's a lot of work to do for the cost model before
autovectorization will be tuned well, and this is not an attempt to
address the larger problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174660 91177308-0d34-0410-b5e6-96231b3b80d8