(The change at Clang side was committed in r166345)
2. Cosmetic change in order to conform to coding standards.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166350 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, it is enabled only if option "enable-mips-tail-calls" is given and
all of the callee's arguments are passed in registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166342 91177308-0d34-0410-b5e6-96231b3b80d8
a memory operand. Retain this information and then add the sizing directives
to the IR. This allows the backend to do proper instruction selection.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166316 91177308-0d34-0410-b5e6-96231b3b80d8
which is supposed to consistently raise SIGTRAP across all systems. In contrast,
__builtin_trap() behave differently on different systems. e.g. it raises SIGTRAP on ARM, and
SIGILL on X86. The purpose of __builtin_debugtrap() is to consistently provide "trap"
functionality, in the mean time preserve the compatibility with on gcc on __builtin_trap().
The X86 backend is already able to handle debugtrap(). This patch is to:
1) make front-end recognize "__builtin_debugtrap()" (emboddied in the one-line change to Clang).
2) In DAG legalization phase, by default, "debugtrap" will be replaced with "trap", which
make the __builtin_debugtrap() "available" to all existing ports without the hassle of
changing their code.
3) If trap-function is specified (via -trap-func=xyz to llc), both __builtin_debugtrap() and
__builtin_trap() will be expanded into the function call of the specified trap function.
This behavior may need change in the future.
The provided testing-case is to make sure 2) and 3) are working for ARM port, and we
already have a testing case for x86.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166300 91177308-0d34-0410-b5e6-96231b3b80d8
- If INSERT_VECTOR_ELT is supported (above SSE2, either by custom
sequence of legal insn), transform BUILD_VECTOR into SHUFFLE +
INSERT_VECTOR_ELT if most of elements could be built from SHUFFLE with few
(so far 1) elements being inserted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166288 91177308-0d34-0410-b5e6-96231b3b80d8
Removed extra stack frame object for fixed byval arguments,
VarArgsStyleRegisters invocation was reworked due to some improper usage in
past. PR14099 also demonstrates it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166273 91177308-0d34-0410-b5e6-96231b3b80d8
When merging stack slots, if StackColoring::remapInstructions gets a
value back from GetUnderlyingObject that it does not know about or is
not itself a stack slot, clear the memory operand in case it aliases
the merged slot. This prevents the introduction of incorrect aliasing
information.
Author: Matthew Curtis <mcurtis@codeaurora.org>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166216 91177308-0d34-0410-b5e6-96231b3b80d8
This more accurately reflects what is actually being stored in the
field.
No functionality change intended.
Author: Matthew Curtis <mcurtis@codeaurora.org>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166215 91177308-0d34-0410-b5e6-96231b3b80d8
*NamedDecl. In turn, build the expressions after we're finished parsing the
asm. This avoids a crasher if the lookup fails.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166212 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strcpy optimizations from the simplify-libcalls pass
into the instcombine library call simplifier. Note also that StrCpyChkOpt
has been updated with a few simplifications that were being done in the
simplify-libcalls version of StrCpyOpt, but not in the migrated implementation
of StrCpyOpt. There is no reason to overload StrCpyOpt with fortified and
regular simplifications in the new model since there is already a dedicated
simplifier for __strcpy_chk.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166198 91177308-0d34-0410-b5e6-96231b3b80d8
layer. Add the ParseMSInlineAsm() function, which is the new interface to
clang. Also expose the new MCAsmParserSemaCallback interface, which is used
by the back-end to do name lookup in Sema. Finally, remove the now defunct
APIs introduced in r165946.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166183 91177308-0d34-0410-b5e6-96231b3b80d8
test case on PowerPC caused by rounding errors when converting from a 64-bit
integer to a single-precision floating point. The reason for this are
double-rounding effects, since on PowerPC we have to convert to an
intermediate double-precision value first, which gets rounded to the
final single-precision result.
The patch fixes the problem by preparing the 64-bit integer so that the
first conversion step to double-precision will always be exact, and the
final rounding step will result in the correctly-rounded single-precision
result. The generated code sequence is equivalent to what GCC would generate.
When -enable-unsafe-fp-math is in effect, that extra effort is omitted
and we accept possible rounding errors (just like GCC does as well).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166178 91177308-0d34-0410-b5e6-96231b3b80d8
operate purely on values. Sink the alloca loading and storing logic into
the rewrite routines that are specific to alloca-integer-rewrite
driving. This is just a refactoring here, but the subsequent step will
be to reuse the insertion and extraction logic when rewriting integer
loads and stores that have been split and decomposed into narrower loads
and stores.
No functionality changed other than different names for instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166176 91177308-0d34-0410-b5e6-96231b3b80d8
over the implicitly-formed-and-nesting CGSCC pass manager and function
pass managers, especially when using them on the opt commandline or
using extension points in the module builder. The '-barrier' opt flag
(or the pass itself) will create a no-op module pass in the pipeline,
resetting the pass manager stack, and allowing the creation of a new
pipeline of function passes or CGSCC passes to be created that is
independent from any previous pipelines.
For example, this can be used to test running two CGSCC passes in
independent CGSCC pass managers as opposed to in the same CGSCC pass
manager. It also allows us to introduce a further hack into the
PassManagerBuilder to separate the O0 pipeline extension passes from the
always-inliner's CGSCC pass manager, which they likely do not want to
participate in... At the very least none of the Sanitizer passes want
this behavior.
This fixes a bug with ASan at O0 currently, and I'll commit the ASan
test which covers this pass. I'm happy to add a test case that this pass
exists and works, but not sure how much time folks would like me to
spend adding test cases for the details of its behavior of partition
pass managers.... The whole thing is just vile, and mostly intended to
unblock ASan, so I'm hoping to rip this all out in a brave new pass
manager world.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166172 91177308-0d34-0410-b5e6-96231b3b80d8
The TargetTransform changes are breaking LTO bootstraps of clang. I am
working with Nadav to figure out the problem, but I am reverting it for now
to get our buildbots working.
This reverts svn commits: 165665 165669 165670 165786 165787 165997
and I have also reverted clang svn 165741
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166168 91177308-0d34-0410-b5e6-96231b3b80d8