up so branch folding pass can't use the scavenger. :-( This doesn't breaks
anything currently. It just means targets which do not carefully update kill
markers cannot run post-ra scheduler (not new, it has always been the case).
We should fix this at some point since it's really hacky.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147719 91177308-0d34-0410-b5e6-96231b3b80d8
opportunities that only present themselves after late optimizations
such as tail duplication .e.g.
## BB#1:
movl %eax, %ecx
movl %ecx, %eax
ret
The register allocator also leaves some of them around (due to false
dep between copies from phi-elimination, etc.)
This required some changes in codegen passes. Post-ra scheduler and the
pseudo-instruction expansion passes have been moved after branch folding
and tail merging. They were before branch folding before because it did
not always update block livein's. That's fixed now. The pass change makes
independently since we want to properly schedule instructions after
branch folding / tail duplication.
rdar://10428165
rdar://10640363
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147716 91177308-0d34-0410-b5e6-96231b3b80d8
the debug type accelerator tables to contain the tag and a flag
stating whether or not a compound type is a complete type.
rdar://10652330
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147651 91177308-0d34-0410-b5e6-96231b3b80d8
a combined-away node and the result of the combine isn't substantially
smaller than the input, it's just canonicalized. This is the first part
of a significant (7%) performance gain for Snappy's hot decompression
loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147604 91177308-0d34-0410-b5e6-96231b3b80d8
The register allocators don't currently support adding reserved
registers while they are running. Extend the MRI API to keep track of
the set of reserved registers when register allocation started.
Target hooks like hasFP() and needsStackRealignment() can look at this
set to avoid reserving more registers during register allocation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147577 91177308-0d34-0410-b5e6-96231b3b80d8
Before we'd get:
$ clang t.c
fatal error: error in backend: Invalid operand for inline asm constraint 'i'!
Now we get:
$ clang t.c
t.c:16:5: error: invalid operand for inline asm constraint 'i'!
"movq (%4), %%mm0\n"
^
Which at least gets us the inline asm that is the problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147502 91177308-0d34-0410-b5e6-96231b3b80d8
This can only happen if the set of reserved registers changes during
register allocation.
<rdar://problem/10625436>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147486 91177308-0d34-0410-b5e6-96231b3b80d8
The failure seen on win32, when i64 type is illegal.
It happens on stage of conversion VECTOR_SHUFFLE to BUILD_VECTOR.
The failure message is:
llc: SelectionDAG.cpp:784: void VerifyNodeCommon(llvm::SDNode*): Assertion `(I->getValueType() == EltVT || (EltVT.isInteger() && I->getValueType().isInteger() && EltVT.bitsLE(I->getValueType()))) && "Wrong operand type!"' failed.
I added a special test that checks vector shuffle on win32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147445 91177308-0d34-0410-b5e6-96231b3b80d8
The failure seen on win32, when i64 type is illegal.
It happens on stage of conversion VECTOR_SHUFFLE to BUILD_VECTOR.
The failure message is:
llc: SelectionDAG.cpp:784: void VerifyNodeCommon(llvm::SDNode*): Assertion `(I->getValueType() == EltVT || (EltVT.isInteger() && I->getValueType().isInteger() && EltVT.bitsLE(I->getValueType()))) && "Wrong operand type!"' failed.
I added a special test that checks vector shuffle on win32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147399 91177308-0d34-0410-b5e6-96231b3b80d8
Promotion of the mask operand needs to be done using PromoteTargetBoolean, and not padded with garbage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147309 91177308-0d34-0410-b5e6-96231b3b80d8
unpredicated. That is, turn
subeq r0, r1, #1
addne r0, r1, #1
into
sub r0, r1, #1
addne r0, r1, #1
For targets where conditional instructions are always executed, this may be
beneficial. It may remove pseudo anti-dependency in out-of-order execution
CPUs. e.g.
op r1, ...
str r1, [r10] ; end-of-life of r1 as div result
cmp r0, #65
movne r1, #44 ; raw dependency on previous r1
moveq r1, #12
If movne is unpredicated, then
op r1, ...
str r1, [r10]
cmp r0, #65
mov r1, #44 ; r1 written unconditionally
moveq r1, #12
Both mov and moveq are no longer depdendent on the first instruction. This gives
the out-of-order execution engine more freedom to reorder them.
This has passed entire LLVM test suite. But it has not been enabled for any ARM
variant pending more performance evaluation.
rdar://8951196
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146914 91177308-0d34-0410-b5e6-96231b3b80d8
Now that getMatchingSuperRegClass() returns accurate results, it can be
used to compute constraints imposed by instructions using a sub-register
of a virtual register.
This means we can recompute the register class of any virtual register
by combining the constraints from all its uses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146874 91177308-0d34-0410-b5e6-96231b3b80d8