the fcopysign expansion from LegalizeDAG to get rid of
what seems to be a bug: the use of sign extension means
that when copying the sign bit from an f32 to an f64,
the upper 32 bits of the f64 (now an i64) are set, not
just the top bit... I also generalized it to work for
any sized floating point types, and removed the bogosity:
SDOperand Mask1 = (SrcVT == MVT::f64)
? DAG.getConstantFP(BitsToDouble(1ULL << 63), SrcVT)
: DAG.getConstantFP(BitsToFloat(1U << 31), SrcVT);
Mask1 = DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Mask1);
(here SrcNVT is an integer with the same size as SrcVT).
As far as I can see this takes a 1 << 63, converts to
a double, converts that to a floating point constant
then converts that to an integer constant, ending up
with... 1 << 63 as an integer constant! So I just
generate this integer constant directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48305 91177308-0d34-0410-b5e6-96231b3b80d8
getCopyToParts problem was noticed by the new
LegalizeTypes infrastructure. In order to avoid
this kind of thing in the future I've added a
check that EXTRACT_ELEMENT is only used with
integers. Once LegalizeTypes is up and running
most likely BUILD_PAIR and EXTRACT_ELEMENT can
be removed, in favour of using apints instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48294 91177308-0d34-0410-b5e6-96231b3b80d8
X86 lowering normalize vector 0 to v4i32. However DAGCombine can fold (sub x, x) -> 0 after legalization. It can create a zero vector of a type that's not expected (e.g. v8i16). We don't want to disable the optimization since leaving a (sub x, x) is really bad. Add isel patterns for other types of vector 0 to ensure correctness. It's highly unlikely to happen other than in bugpoint reduced test cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48279 91177308-0d34-0410-b5e6-96231b3b80d8
that merely add passes. This allows them to be used with either
FunctionPassManager or PassManager, or even with a custom new
kind of pass manager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48256 91177308-0d34-0410-b5e6-96231b3b80d8
and it's the result that requires expansion. This code is a little confusing
because the TargetLoweringInfo tables for [US]INT_TO_FP use the operand type
(the integer type) rather than the result type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48206 91177308-0d34-0410-b5e6-96231b3b80d8
return ValueType can depend its operands' ValueType.
This is a cosmetic change, no functionality impacted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48145 91177308-0d34-0410-b5e6-96231b3b80d8
If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
A = or A, B
...
B = A
...
C = A<kill>
...
= B
then do not add kills of A to the newly created B interval.
- Also fix some kill info update bug.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48141 91177308-0d34-0410-b5e6-96231b3b80d8
Change insert/extract subreg instructions to be able to be used in TableGen patterns.
Use the above features to reimplement an x86-64 pseudo instruction as a pattern.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48130 91177308-0d34-0410-b5e6-96231b3b80d8
field to 32 bits, thus enabling correct handling of ByVal
structs bigger than 0x1ffff. Abstract interface a bit.
Fixes gcc.c-torture/execute/pr23135.c and
gcc.c-torture/execute/pr28982b.c in gcc testsuite (were ICE'ing
on ppc32, quietly producing wrong code on x86-32.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48122 91177308-0d34-0410-b5e6-96231b3b80d8
they are produced by calls (which are known exact) and by cross block copies
which are known to be produced by extends.
This improves:
define double @test2() {
%tmp85 = call double asm sideeffect "fld0", "={st(0)}"()
ret double %tmp85
}
from:
_test2:
subl $20, %esp
# InlineAsm Start
fld0
# InlineAsm End
fstpl 8(%esp)
movsd 8(%esp), %xmm0
movsd %xmm0, (%esp)
fldl (%esp)
addl $20, %esp
#FP_REG_KILL
ret
to:
_test2:
# InlineAsm Start
fld0
# InlineAsm End
#FP_REG_KILL
ret
by avoiding a f64 <-> f80 trip
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48108 91177308-0d34-0410-b5e6-96231b3b80d8
an RFP register class.
Teach ScheduleDAG how to handle CopyToReg with different src/dst
reg classes.
This allows us to compile trivial inline asms that expect stuff
on the top of x87-fp stack.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48107 91177308-0d34-0410-b5e6-96231b3b80d8
in different register classes, e.g. copy of ST(0) to RFP*. This gets
some really trivial inline asm working that plops things on the top of
stack (PR879)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48105 91177308-0d34-0410-b5e6-96231b3b80d8
of BUILD_VECTORS that only have two unique elements:
1. The previous code was nondeterminstic, because it walked a map in
SDOperand order, which isn't determinstic.
2. The previous code didn't handle the case when one element was undef
very well. Now we ensure that the generated shuffle mask has the
undef vector on the RHS (instead of potentially being on the LHS)
and that any elements that refer to it are themselves undef. This
allows us to compile CodeGen/X86/vec_set-9.ll into:
_test3:
movd %rdi, %xmm0
punpcklqdq %xmm0, %xmm0
ret
instead of:
_test3:
movd %rdi, %xmm1
#IMPLICIT_DEF %xmm0
punpcklqdq %xmm1, %xmm0
ret
... saving a register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48060 91177308-0d34-0410-b5e6-96231b3b80d8