Summary:
- Handle TypePromoteFloat in switch statements
- Move an expression into an assert to avoid unused variable in
non-assert builds.
Reviewers: srhines, ab
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9086
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235220 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch adds legalization support to operate on FP16 as a load/store type
and do operations on it as floats.
Tests for ARM are added to test/CodeGen/ARM/fp16-promote.ll
Reviewers: srhines, t.p.northover
Differential Revision: http://reviews.llvm.org/D8755
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235215 91177308-0d34-0410-b5e6-96231b3b80d8
This is a followon to r233681 - I'd misunderstood the semantics of FTRUNC,
and had confused it with (FP_ROUND ..., 0).
Thanks for Ahmed Bougacha for his post-commit review!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235191 91177308-0d34-0410-b5e6-96231b3b80d8
This now emits simple, unoptimized xdata tables for __C_specific_handler
based on the handlers listed in @llvm.eh.actions calls produced by
WinEHPrepare.
This adds support for running __finally blocks when exceptions are
thrown, and removes the old landingpad fan-in codepath.
I ran some manual execution tests on small basic test cases with and
without optimization, as well as on Chrome base_unittests, which uses a
small amount of SEH. I'm sure there are bugs, and we may need to
revert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235154 91177308-0d34-0410-b5e6-96231b3b80d8
This is a major rewrite of the SelectionDAG switch lowering. The previous code
would lower switches as a binary tre, discovering clusters of cases
suitable for lowering by jump tables or bit tests as it went along. To increase
the likelihood of finding jump tables, the binary tree pivot was selected to
maximize case density on both sides of the pivot.
By not selecting the pivot in the middle, the binary trees would not always
be balanced, leading to performance problems in the generated code.
This patch rewrites the lowering to search for clusters of cases
suitable for jump tables or bit tests first, and then builds the binary
tree around those clusters. This way, the binary tree will always be balanced.
This has the added benefit of decoupling the different aspects of the lowering:
tree building and jump table or bit tests finding are now easier to tweak
separately.
For example, this will enable us to balance the tree based on profile info
in the future.
The algorithm for finding jump tables is O(n^2), whereas the previous algorithm
was O(n log n) for common cases, and quadratic only in the worst-case. This
doesn't seem to be major problem in practice, e.g. compiling a file consisting
of a 10k-case switch was only 30% slower, and such large switches should be rare
in practice. Compiling e.g. gcc.c showed no compile-time difference. If this
does turn out to be a problem, we could limit the search space of the algorithm.
This commit also disables all optimizations during switch lowering in -O0.
Differential Revision: http://reviews.llvm.org/D8649
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235101 91177308-0d34-0410-b5e6-96231b3b80d8
Fix for test case found by James Molloy - TRUNCATE of constant build vectors can be more simply achieved by simply replacing with a new build vector node with the truncated value type - no need to touch the scalar operands at all.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235079 91177308-0d34-0410-b5e6-96231b3b80d8
The only type that isn't an integer, isn't floating point, and isn't
a vector; ladies and gentlemen, the gift that keeps on giving: x86_mmx!
Fixes PR23246.
Original message (reverted in r235062):
[CodeGen] Combine concat_vectors of scalars into build_vector.
Combine something like:
(v8i8 concat_vectors (v2i8 bitcast (i16)) x4)
into:
(v8i8 (bitcast (v4i16 BUILD_VECTOR (i16) x4)))
If any of the scalars are floating point, use that throughout.
Differential Revision: http://reviews.llvm.org/D8948
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235072 91177308-0d34-0410-b5e6-96231b3b80d8
This avoids emitting code for unreachable landingpad blocks that contain
calls to llvm.eh.actions and indirectbr.
It's also a first step towards unifying the SEH and WinEH lowering
codepaths. I'm keeping the old fan-in lowering of SEH around until the
preparation version works well enough that we can switch over without
breaking existing users.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235037 91177308-0d34-0410-b5e6-96231b3b80d8
Gut all the non-pointer API from the variable wrappers, except an
implicit conversion from `DIGlobalVariable` to `DIDescriptor`. Note
that if you're updating out-of-tree code, `DIVariable` wraps
`MDLocalVariable` (`MDVariable` is a common base class shared with
`MDGlobalVariable`).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234840 91177308-0d34-0410-b5e6-96231b3b80d8
Combine something like:
(v8i8 concat_vectors (v2i8 bitcast (i16)) x4)
into:
(v8i8 (bitcast (v4i16 BUILD_VECTOR (i16) x4)))
If any of the scalars are floating point, use that throughout.
Differential Revision: http://reviews.llvm.org/D8948
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234809 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of calling the somewhat confusingly-named
`DIVariable::isInlinedFnArgument()`, do the check directly here.
There's possibly a small functionality change here: instead of
`dyn_cast<>`'ing `DV->getScope()` to `MDSubprogram`, I'm looking up the
scope chain for the actual subprogram. I suspect that this is a no-op
for function arguments so in practise there isn't a real difference.
I've also added a `FIXME` to check the `inlinedAt:` chain instead, since
I wonder if that would be more reliable than the
`MDSubprogram::describes()` function.
Since this was the only user of `DIVariable::isInlinedFnArgument()`,
delete it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234799 91177308-0d34-0410-b5e6-96231b3b80d8
Revert "Remove default in fully-covered switch (to fix Clang -Werror -Wcovered-switch-default)"
Revert "R600: Add carry and borrow instructions. Use them to implement UADDO/USUBO"
Revert "LegalizeDAG: Try to use Overflow operations when expanding ADD/SUB"
Using overflow operations fails CodeGen/Generic/2011-07-07-ScheduleDAGCrash.ll
on hexagon, nvptx, and r600. Revert while I investigate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234768 91177308-0d34-0410-b5e6-96231b3b80d8
The patch is generated using clang-tidy misc-use-override check.
This command was used:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
-checks='-*,misc-use-override' -header-filter='llvm|clang' \
-j=32 -fix -format
http://reviews.llvm.org/D8925
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234679 91177308-0d34-0410-b5e6-96231b3b80d8
The IPToState table must be emitted after we have generated labels for
all functions in the table. Don't rely on the order of the list of
globals. Instead, utilize WinEHFuncInfo to tell us how many catch
handlers we expect to outline. Once we know we've visited all the catch
handlers, emit the cppxdata.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234566 91177308-0d34-0410-b5e6-96231b3b80d8
For the most common ones (such as fadd), we already did the promotion.
Do the same thing for all the others.
Currently, we'll just crash/assert on all these operations, as
there's no hardware or libcall support whatsoever.
f16 (half) is specified as an interchange - not arithmetic - format,
and is expected to be promoted to single-precision for arithmetic
operations.
While there, teach the legalizer about promoting some of the (mostly
floating-point) operations that we never needed before.
Differential Revision: http://reviews.llvm.org/D8648
See related discussion on the thread for: http://reviews.llvm.org/D8755
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234550 91177308-0d34-0410-b5e6-96231b3b80d8
We already do:
concat_vectors(scalar, undef) -> scalar_to_vector(scalar)
When the scalar is legal.
When it's not, but is a truncated legal scalar, we can also do:
concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
Which is equivalent, since the upper lanes are undef anyway.
While there, teach the combine to look at more than 2 operands.
Differential Revision: http://reviews.llvm.org/D8883
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234530 91177308-0d34-0410-b5e6-96231b3b80d8
The bug manifests when there are two loads and two stores chained as follows in
a DAG,
(ld v3f32) -> (st f32) -> (ld v3f32) -> (st f32)
and the stores' values are extracted from the preceding vector loads.
MergeConsecutiveStores would replace the first store in the chain with the
merged vector store, which would create a cycle between the merged store node
and the last load node that appears in the chain.
This commits fixes the bug by replacing the last store in the chain instead.
rdar://problem/20275084
Differential Revision: http://reviews.llvm.org/D8849
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234430 91177308-0d34-0410-b5e6-96231b3b80d8
Fast isel used to zero extends immediates to 64 bits. This normally goes
unnoticed because the value is truncated to 32 bits for output.
Two cases were it is noticed:
* We fail to use smaller encodings.
* If the original constant was smaller than i32.
In the tests using i1 constants, codegen would change to use -1, which is fine
(and matches what regular isel does) since only the lowest bit is then used.
Instead, this patch then changes the ir to use i8 constants, which looks more
like what clang produces.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234249 91177308-0d34-0410-b5e6-96231b3b80d8
The uselist isn't enough to infer anything about the lifetime of such
allocas. If we want to re-add this optimization, we will need to
leverage lifetime markers to do it.
Fixes PR23122.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234196 91177308-0d34-0410-b5e6-96231b3b80d8
Scalar integers are commuted to move constants to the RHS for re-association - this ensures vectors do the same.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234092 91177308-0d34-0410-b5e6-96231b3b80d8
This add support for catching an exception such that an exception object
available to the catch handler will be initialized by the runtime.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234062 91177308-0d34-0410-b5e6-96231b3b80d8
We don't need to represent UnwindHelp in IR. Instead, we can use the
knowledge that we are emitting the parent function to decide if we
should create the UnwindHelp stack object.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234061 91177308-0d34-0410-b5e6-96231b3b80d8
As a follow-up to r234021, assert that a debug info intrinsic variable's
`MDLocalVariable::getInlinedAt()` always matches the
`MDLocation::getInlinedAt()` of its `!dbg` attachment.
The goal here is to get rid of `MDLocalVariable::getInlinedAt()`
entirely (PR22778), but I'll let these assertions bake for a while
first.
If you have an out-of-tree backend that just broke, you're probably
attaching the wrong `DebugLoc` to a `DBG_VALUE` instruction. The one
you want is the location that was attached to the corresponding
`@llvm.dbg.declare` or `@llvm.dbg.value` call that you started with.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234038 91177308-0d34-0410-b5e6-96231b3b80d8
Use `MDLocalVariable` and `MDExpression` directly for the arguments of
`EmitFuncArgumentDbgValue()` to simplify a follow-up patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234026 91177308-0d34-0410-b5e6-96231b3b80d8
This patch attempts to fold the shuffling of 'scalar source' inputs - BUILD_VECTOR and SCALAR_TO_VECTOR nodes - if the shuffle node is the only user. This folds away a lot of unnecessary shuffle nodes, and allows quite a bit of constant folding that was being missed.
Differential Revision: http://reviews.llvm.org/D8516
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234004 91177308-0d34-0410-b5e6-96231b3b80d8
This lets us catch exceptions in simple cases.
N.B. Things that do not work include (but are not limited to):
- Throwing from within a catch handler.
- Catching an object with a named catch parameter.
- 'CatchHigh' is fictitious, we aren't sure of its purpose.
- We aren't entirely efficient with regards to the number of EH states
that we generate.
- IP-to-State tables are sensitive to the order of emission.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233767 91177308-0d34-0410-b5e6-96231b3b80d8
The existing code in getMemsetValue only handled integer-preferred types when
the fill value was not a constant. Make this more robust in two ways:
1. If the preferred type is a floating-point value, do the mul-splat trick on
the corresponding integer type and then bitcast.
2. If the preferred type is a vector, do the mul-splat trick on one vector
element, and then build a vector out of them.
Fixes PR22754 (although, we should also turn off use of vector types at -O0).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233749 91177308-0d34-0410-b5e6-96231b3b80d8