It's useful for the memory managers that are allocating a section to know what the name of the section is.
At a minimum, this is useful for low-level debugging - it's customary for JITs to be able to tell you what
memory they allocated, and as part of any such dump, they should be able to tell you some meta-data about
what each allocation is for. This allows clients that supply their own memory managers to do this.
Additionally, we also envision the SectionName being useful for passing meta-data from within LLVM to an LLVM
client.
This changes both the C and C++ APIs, and all of the clients of those APIs within LLVM. I'm assuming that
it's safe to change the C++ API because that API is allowed to change. I'm assuming that it's safe to change
the C API because we haven't shipped the API in a release yet (LLVM 3.3 doesn't include the MCJIT memory
management C API).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191804 91177308-0d34-0410-b5e6-96231b3b80d8
If an ELF relocation is pointed at an absolute address, it will have a symbol ID of zero.
RuntimeDyldELF::processRelocationRef was not previously handling this case, and was instead trying to handle it as a section-relative fixup.
I think this is the right fix here, but my elf-fu is poor on some of the more exotic platforms, so I'd appreciate it if anyone with greater knowledge could verify this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188572 91177308-0d34-0410-b5e6-96231b3b80d8
* ELFTypes.h contains template magic for defining types based on endianess, size, and alignment.
* ELFFile.h defines the ELFFile class which provides low level ELF specific access.
* ELFObjectFile.h contains ELFObjectFile which uses ELFFile to implement the ObjectFile interface.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188022 91177308-0d34-0410-b5e6-96231b3b80d8
This patch provides basic support for powerpc64le as an LLVM target.
However, use of this target will not actually generate little-endian
code. Instead, use of the target will cause the correct little-endian
built-in defines to be generated, so that code that tests for
__LITTLE_ENDIAN__, for example, will be correctly parsed for
syntax-only testing. Code generation will otherwise be the same as
powerpc64 (big-endian), for now.
The patch leaves open the possibility of creating a little-endian
PowerPC64 back end, but there is no immediate intent to create such a
thing.
The LLVM portions of this patch simply add ppc64le coverage everywhere
that ppc64 coverage currently exists. There is nothing of any import
worth testing until such time as little-endian code generation is
implemented. In the corresponding Clang patch, there is a new test
case variant to ensure that correct built-in defines for little-endian
code are generated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187179 91177308-0d34-0410-b5e6-96231b3b80d8
This should actually make the MCJIT tests pass again on AArch64. I don't know
how I missed their failure before.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187120 91177308-0d34-0410-b5e6-96231b3b80d8
Similar to ARM change r182800, dynamic linker will read bits/addends from
the original object rather than from the object that might have been patched
previously. For the purpose of relocations for MCJIT stubs on MIPS, we
internally use otherwise unused MIPS relocations.
The change also enables MCJIT unit tests for MIPS (EL/BE), and the following
two tests now pass:
- MCJITTest.return_global and
- MCJITTest.multiple_functions.
These issues have been tracked as Bug 16250.
Patch by Petar Jovanovic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187019 91177308-0d34-0410-b5e6-96231b3b80d8
According to the AArch64 ELF specification (4.6.8), it's the
assembler's responsibility to make sure the shift amount is correct in
relocated MOVZ/MOVK instructions.
This wasn't being obeyed by either the MCJIT CodeGen or RuntimeDyldELF
(which happened to work out well for JIT tests). This commit should
make us compliant in this area.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185360 91177308-0d34-0410-b5e6-96231b3b80d8
In ELF (as in MachO), not all relocations point to symbols. Represent this
properly by using a symbol_iterator instead of a SymbolRef. Update llvm-readobj
ELF's dumper to handle relocatios without symbols.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183284 91177308-0d34-0410-b5e6-96231b3b80d8
This was missing from r182908. I didn't noticed it at the time because the MCJIT tests were
disabled when building with cmake on ppc64 (which I fixed in r183143).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183147 91177308-0d34-0410-b5e6-96231b3b80d8
Previously we would read-modify-write the target bits when processing
relocations for the MCJIT. This had the problem that when relocations
were processed multiple times for the same object file (as they can
be), the result is not idempotent and the values became corrupted.
The solution to this is to take any bits used in the destination from
the pristine object file as LLVM emitted it.
This should fix PR16013 and remote MCJIT on ARM ELF targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182800 91177308-0d34-0410-b5e6-96231b3b80d8
AArch64 ELF uses .rela relocations so there's no need to actually make
use of the bits we're setting in the destination However, we should
make sure all bits are cleared properly since multiple runs of
resolveRelocations are possible and these could combine to produce
invalid results if stale versions remain in the code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182214 91177308-0d34-0410-b5e6-96231b3b80d8
It was only implemented for ELF where it collected the Addend, so this
patch also renames it to getRelocationAddend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181502 91177308-0d34-0410-b5e6-96231b3b80d8
This gets exception handling working on ELF and Macho (x86-64 at least).
Other than the EH frame registration, this patch also implements support
for GOT relocations which are used to locate the personality function on
MachO.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181167 91177308-0d34-0410-b5e6-96231b3b80d8
This is about the simplest relocation, but surprisingly rare in actual
code.
It occurs in (for example) the MCJIT test test-ptr-reloc.ll.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181134 91177308-0d34-0410-b5e6-96231b3b80d8
As with global accesses, external functions could exist anywhere in
memory. Therefore the stub must create a complete 64-bit address. This
patch implements the fragment as (roughly):
movz x16, #:abs_g3:somefunc
movk x16, #:abs_g2_nc:somefunc
movk x16, #:abs_g1_nc:somefunc
movk x16, #:abs_g0_nc:somefunc
br x16
In principle we could save 4 bytes by using a literal-load instead,
but it is unclear that would be more efficient and can only be tested
when real hardware is readily available.
This allows (for example) the MCJIT test 2003-05-07-ArgumentTest to
pass on AArch64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181133 91177308-0d34-0410-b5e6-96231b3b80d8
The large memory model (default and main viable for JIT) emits
addresses in need of relocation as
movz x0, #:abs_g3:somewhere
movk x0, #:abs_g2_nc:somewhere
movk x0, #:abs_g1_nc:somewhere
movk x0, #:abs_g0_nc:somewhere
To support this we must implement those four relocations in the
dynamic loader.
This allows (for example) the test-global.ll MCJIT test to pass on
AArch64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181132 91177308-0d34-0410-b5e6-96231b3b80d8
R_AARCH64_PCREL32 is present in even trivial .eh_frame sections and so
is required to compile any function without the "nounwind" attribute.
This change implements very basic infrastructure in the RuntimeDyldELF
file and allows (for example) the test-shift.ll MCJIT test to pass
on AArch64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181131 91177308-0d34-0410-b5e6-96231b3b80d8
Another step towards reinstating the SystemZ backend. I'll commit
the configure changes separately (TARGET_HAS_JIT etc.), then commit
a patch to enable the MCJIT tests on SystemZ.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181015 91177308-0d34-0410-b5e6-96231b3b80d8
For regular object files this is only meaningful for common symbols. An object
file format with direct support for atoms should be able to provide alignment
information for all symbols.
This replaces getCommonSymbolAlignment and fixes
test-common-symbols-alignment.ll on darwin. This also includes a fix to
MachOObjectFile::getSymbolFlags. It was marking undefined symbols as common
(already tested by existing mcjit tests now that it is used).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180736 91177308-0d34-0410-b5e6-96231b3b80d8
For MachO we need information that is not represented in ObjRelocationInfo.
Instead of copying the bits we think are needed from a relocation_iterator,
just pass the relocation_iterator down to the format specific functions.
No functionality change yet as we still drop the information once
processRelocationRef returns.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180711 91177308-0d34-0410-b5e6-96231b3b80d8
* We only ever specialize these templates with an instantiation of ELFType,
so we don't need a template template.
* Replace LLVM_ELF_COMMA with just passing the individual parameters to the
macro. This requires a second macro for when we only have ELFT, but that
is still a small win.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179726 91177308-0d34-0410-b5e6-96231b3b80d8
When the RuntimeDyldELF::processRelocationRef routine finds the target
symbol of a relocation in the local or global symbol table, it performs
a section-relative relocation:
Value.SectionID = lsi->second.first;
Value.Addend = lsi->second.second;
At this point, however, any Addend that might have been specified in
the original relocation record is lost. This is somewhat difficult to
trigger for relocations within the code section since they usually
do not contain non-zero Addends (when built with the default JIT code
model, in any case). However, the problem can be reliably triggered
by a relocation within the data section caused by code like:
int test[2] = { -1, 0 };
int *p = &test[1];
The initializer of "p" will need a relocation to "test + 4". On
platforms using RelA relocations this means an Addend of 4 is required.
Current code ignores this addend when processing the relocation,
resulting in incorrect execution.
Fixed by taking the Addend into account when processing relocations
to symbols found in the local or global symbol table.
Tested on x86_64-linux and powerpc64-linux.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178869 91177308-0d34-0410-b5e6-96231b3b80d8
This simplifies the usage and implementation of ELFObjectFile by using ELFType
to replace:
<endianness target_endianness, std::size_t max_alignment, bool is64Bits>
This does complicate the base ELF types as they must now use template template
parameters to partially specialize for the 32 and 64bit cases. However these
are only defined once.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172515 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adjust the r171506 to make all DWARF enconding pc-relative
for PPC64. It also adds the R_PPC64_REL32 relocation handling in MCJIT
(since the eh_frame will not generate PIC-relative relocation) and also
adds the emission of stubs created by the TTypeEncoding.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171979 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes the PPC eh_frame definitions for the personality and
frame unwinding for PIC objects. It makes PIC build correctly creates
relative relocations in the '.rela.eh_frame' segments and thus avoiding
a text relocation that generates a DT_TEXTREL segments in link phase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171506 91177308-0d34-0410-b5e6-96231b3b80d8
This small change adds support for that. It will make all MCJIT tests pass
in make-check on BigEndian platforms.
Patch by Petar Jovanovic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169178 91177308-0d34-0410-b5e6-96231b3b80d8
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
all symbols during object loading, not just global ones.
This fixes JIT execution of code using llvm.global_ctors with internal
linkage constructors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168148 91177308-0d34-0410-b5e6-96231b3b80d8
Some ELF relocations require adding the a value to the original contents of the object buffer at the specified location. In order to properly handle multiple applications of a relocation, the RuntimeDyld code should be grabbing the original value from the object buffer and writing a new value into the loaded section buffer. This patch changes the parameters passed to resolveRelocations to accommodate this need.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167304 91177308-0d34-0410-b5e6-96231b3b80d8
isa<> et al. automatically infer when the cast is an upcast (including a
self-cast), so these are no longer necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165767 91177308-0d34-0410-b5e6-96231b3b80d8
No new tests are added.
All tests in ExecutionEngine/MCJIT that have been failing pass after this patch
is applied (when "make check" is done on a mips board).
Patch by Petar Jovanovic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162135 91177308-0d34-0410-b5e6-96231b3b80d8