to 64-bits, and added a new attribute in bit #32. Specifically, remove
this new attribute from the enum used in the C API. It's not yet clear
what the best approach is for exposing these new attributes in the
C API, and several different proposals are on the table. Until then, we
can simply not expose this bit in the API at all.
Also, I've reverted a somewhat unrelated change in the same revision
which switched from "1 << 31" to "1U << 31" for the top enum. While "1
<< 31" is technically undefined behavior, implementations DTRT here.
However, MS and -pedantic mode warn about non-'int' type enumerator
values. If folks feel strongly about this I can put the 'U' back in, but
it seemed best to wait for the proper solution.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148937 91177308-0d34-0410-b5e6-96231b3b80d8
Original log:
Introduce a new ConstantVector::getSplat constructor function to
simplify a really common case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148906 91177308-0d34-0410-b5e6-96231b3b80d8
did something extremely surprising, and shadowed actually useful
implementations that had completely different behavior.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148898 91177308-0d34-0410-b5e6-96231b3b80d8
add a ConstantDataArray::getString method that corresponds to the (to be
removed) StringRef version of ConstantArray::get, but is dramatically more
efficient.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148804 91177308-0d34-0410-b5e6-96231b3b80d8
and clean up some other misc stuff. Unlike ConstantArray, we will
prefer to emit .fill directives for "String" arrays that all have
the same value, since they are denser than emitting a .ascii
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148793 91177308-0d34-0410-b5e6-96231b3b80d8
same semantics as ConstantArray's but much more efficient because they
don't have to return std::string's. The ConstantArray methods will
eventually be removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148792 91177308-0d34-0410-b5e6-96231b3b80d8
out into a new ConstantFoldLoadThroughGEPIndices (more useful) function
and rewrite it to be simpler, more efficient, and to handle the new
ConstantDataSequential type.
Enhance ConstantFoldLoadFromConstPtr to handle ConstantDataSequential.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148786 91177308-0d34-0410-b5e6-96231b3b80d8
violation -- MC cannot depend on CodeGen.
Specifically, the MCTargetDesc component of each target is actually
a subcomponent of the MC library. As such, it cannot depend on the
target-independent code generator, because MC itself cannot depend on
the target-independent code generator. This change moved a flag from the
ARM MCTargetDesc file ARMMCAsmInfo.cpp to the CodeGen layer in
ARMException.cpp, leaving behind an 'extern' to refer back to it. That
layering order isn't viable givin the constraints outlined above.
Commandline flags are designed to be static specifically to avoid these
types of bugs.
Fixing this is likely going to require some non-trivial refactoring.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148759 91177308-0d34-0410-b5e6-96231b3b80d8
This was suggested by Chandler Carruth on the basis of past experience with
esoteric compilers/quirks relating to signed enums.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148746 91177308-0d34-0410-b5e6-96231b3b80d8
classes, per PR1324. Not all of their helper functions are implemented,
nothing creates them, and the rest of the compiler doesn't handle them yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148741 91177308-0d34-0410-b5e6-96231b3b80d8
This change adds an new value to the --arm-enable-ehabi option that
disables emitting unwinding descriptors. This mode gives a working
backtrace() without the (currently broken) exception support.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148686 91177308-0d34-0410-b5e6-96231b3b80d8
in a subclass named DyldELFObject. This class supports rebasing the object file
it represents by re-mapping section addresses to the actual memory addresses
the object was placed in. This is required for MC-JIT implementation on ELF with
debugging support.
Patch reviewed on llvm-commits.
Developed together with Ashok Thirumurthi and Andrew Kaylor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148653 91177308-0d34-0410-b5e6-96231b3b80d8
A register mask operand kills any live physreg that isn't preserved.
Unlike an implicit-def operand, the clobbered physregs are never live
afterwards.
This means LiveVariables has to track a much smaller number of live
physregs, and it should spend much less time in addRegisterDead().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148609 91177308-0d34-0410-b5e6-96231b3b80d8
Problem: LLVM needs more function attributes than currently available (32 bits).
One such proposed attribute is "address_safety", which shows that a function is being checked for address safety (by AddressSanitizer, SAFECode, etc).
Solution:
- extend the Attributes from 32 bits to 64-bits
- wrap the object into a class so that unsigned is never erroneously used instead
- change "unsigned" to "Attributes" throughout the code, including one place in clang.
- the class has no "operator uint64 ()", but it has "uint64_t Raw() " to support packing/unpacking.
- the class has "safe operator bool()" to support the common idiom: if (Attributes attr = getAttrs()) useAttrs(attr);
- The CTOR from uint64_t is marked explicit, so I had to add a few explicit CTOR calls
- Add the new attribute "address_safety". Doing it in the same commit to check that attributes beyond first 32 bits actually work.
- Some of the functions from the Attribute namespace are worth moving inside the class, but I'd prefer to have it as a separate commit.
Tested:
"make check" on Linux (32-bit and 64-bit) and Mac (10.6)
built/run spec CPU 2006 on Linux with clang -O2.
This change will break clang build in lib/CodeGen/CGCall.cpp.
The following patch will fix it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148553 91177308-0d34-0410-b5e6-96231b3b80d8
LSR has gradually been improved to more aggressively reuse existing code, particularly existing phi cycles. This exposed problems with the SCEVExpander's sloppy treatment of its insertion point. I applied some rigor to the insertion point problem that will hopefully avoid an endless bug cycle in this area. Changes:
- Always used properlyDominates to check safe code hoisting.
- The insertion point provided to SCEV is now considered a lower bound. This is usually a block terminator or the use itself. Under no cirumstance may SCEVExpander insert below this point.
- LSR is reponsible for finding a "canonical" insertion point across expansion of different expressions.
- Robust logic to determine whether IV increments are in "expanded" form and/or can be safely hoisted above some insertion point.
Fixes PR11783: SCEVExpander assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148535 91177308-0d34-0410-b5e6-96231b3b80d8
to instruction right after the last instruction in the bundle.
- Add a finalizeBundle() variant that doesn't specify LastMI. Instead, the code
will find the last instruction in the bundle by following the 'InsideBundle'
marker. This is useful in case bundles are formed early (i.e. during MI
scheduling) but finalized later (i.e. after register allocator has finished
rewriting virtual registers with physical registers).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148444 91177308-0d34-0410-b5e6-96231b3b80d8
This SelectionDAG node will be attached to call nodes by LowerCall(),
and eventually becomes a MO_RegisterMask MachineOperand on the
MachineInstr representing the call instruction.
LowerCall() will attach a register mask that depends on the calling
convention.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148436 91177308-0d34-0410-b5e6-96231b3b80d8