When spilling around an instruction with a dead def, remember to add a
value number for the def.
The missing value number wouldn't normally create problems since there
would be an incoming live range as well. However, due to another bug
we could spill a dead V_SET0 instruction which doesn't read any values.
The missing value number caused an empty live range to be created which
is dangerous since it doesn't interfere with anything.
This fixes part of PR11125.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@141923 91177308-0d34-0410-b5e6-96231b3b80d8
If the source register is live after the copy being spilled, there is no
point to hoisting it. Hoisting inside a basic block only serves to
resolve interferences by shortening the live range of the source.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139882 91177308-0d34-0410-b5e6-96231b3b80d8
When -split-spill-mode is enabled, spill hoisting is performed by
SplitKit instead of by InlineSpiller. This hidden command line option
is for testing the splitter spill mode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139845 91177308-0d34-0410-b5e6-96231b3b80d8
Adjust counters when removing spill and reload instructions.
We still don't account for reloads being removed by eliminateDeadDefs().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139806 91177308-0d34-0410-b5e6-96231b3b80d8
When traceSiblingValue() encounters a PHI-def value created by live
range splitting, don't look at all the predecessor blocks. That can be
very expensive in a complicated CFG.
Instead, consider that all the non-PHI defs jointly dominate all the
PHI-defs. Tracing directly to all the non-PHI defs is much faster that
zipping around in the CFG when there are many PHIs with many
predecessors.
This significantly improves compile time for indirectbr interpreters.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139797 91177308-0d34-0410-b5e6-96231b3b80d8
In some cases such as interpreters using indirectbr, the CFG can be very
complicated, and live range splitting may be forced to insert a large
number of phi-defs. When that happens, traceSiblingValue can spend a
lot of time zipping around in the CFG looking for defs and reloads.
This patch causes more information to be cached in SibValues, and the
cached values are used to terminate searches early. This speeds up
spilling by 20x in one interpreter test case. For more typical code,
this is just a 10% speedup of spilling.
The previous version had bugs that caused miscompilations. They have
been fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139378 91177308-0d34-0410-b5e6-96231b3b80d8
In some cases such as interpreters using indirectbr, the CFG can be very
complicated, and live range splitting may be forced to insert a large
number of phi-defs. When that happens, traceSiblingValue can spend a
lot of time zipping around in the CFG looking for defs and reloads.
This patch causes more information to be cached in SibValues, and the
cached values are used to terminate searches early. This speeds up
spilling by 20x in one interpreter test case. For more typical code,
this is just a 10% speedup of spilling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139247 91177308-0d34-0410-b5e6-96231b3b80d8
The problem is fixed for all register allocators by r138944, so this
patch is no longer necessary.
<rdar://problem/10032939>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138945 91177308-0d34-0410-b5e6-96231b3b80d8
I don't currently have a good testcase for this; will try to get one
tomorrow. <rdar://problem/10032939>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138794 91177308-0d34-0410-b5e6-96231b3b80d8
When trying to rematerialize a value before an instruction that has an
early-clobber redefine of the virtual register, make sure to look up the
correct value number.
Early-clobber defs are moved one slot back, so getBaseIndex is needed to
find the used value number.
Bugpoint was unable to reduce the test case for this, see PR10388.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135378 91177308-0d34-0410-b5e6-96231b3b80d8
Spills should be hoisted out of loops, but we don't want to hoist them
to dominating blocks at the same loop depth. That could cause the spills
to be executed more often.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134782 91177308-0d34-0410-b5e6-96231b3b80d8
Try to move spills as early as possible in their basic block. This can
help eliminate interferences by shortening the live range being
spilled.
This fixes PR10221.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134776 91177308-0d34-0410-b5e6-96231b3b80d8
Remat during spilling triggers dead code elimination. If a phi-def
becomes unused, that may also cause live ranges to split into separate
connected components.
This type of splitting is different from normal live range splitting. In
particular, there may not be a common original interval.
When the split range is its own original, make sure that the new
siblings are also their own originals. The range being split cannot be
used as an original since it doesn't cover the new siblings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134413 91177308-0d34-0410-b5e6-96231b3b80d8
about to be spilled.
This can only happen when two extra snippet registers are included in the spill,
and there is a copy between them. Hoisting the spill creates problems because
the hoist will mark the copy for later dead code elimination, and spilling the
second register will turn the copy into a spill.
<rdar://problem/9420853>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131192 91177308-0d34-0410-b5e6-96231b3b80d8
This could happen when trying to use a value that had been eliminated after dead
code elimination and folding loads.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130597 91177308-0d34-0410-b5e6-96231b3b80d8
The rematerialized instruction may require a more constrained register class
than the register being spilled. In the test case, the spilled register has been
inflated to the DPR register class, but we are rematerializing a load of the
ssub_0 sub-register which only exists for DPR_VFP2 registers.
The register class is reinflated after spilling, so the conservative choice is
only temporary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128610 91177308-0d34-0410-b5e6-96231b3b80d8
The instruction to be rematerialized may not be the one defining the register
that is being spilled. The traceSiblingValue() function sees through sibling
copies to find the remat candidate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128449 91177308-0d34-0410-b5e6-96231b3b80d8
The main register class may have been inflated by live range splitting, so that
register class is not necessarily valid for the snippet instructions.
Use the original register class for the stack slot interval.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128351 91177308-0d34-0410-b5e6-96231b3b80d8
Stack slot real estate is virtually free compared to registers, so it is
advantageous to spill earlier even though the same value is now kept in both a
register and a stack slot.
Also eliminate redundant spills by extending the stack slot live range
underneath reloaded registers.
This can trigger a dead code elimination, removing copies and even reloads that
were only feeding spills.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127868 91177308-0d34-0410-b5e6-96231b3b80d8
I have convinced myself that it can only happen when a phi value dies. When it
happens, allocate new virtual registers for the components.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127827 91177308-0d34-0410-b5e6-96231b3b80d8
After live range splitting, an original value may be available in multiple
registers. Tracing back through the registers containing the same value, find
the best place to insert a spill, determine if the value has already been
spilled, or discover a reaching def that may be rematerialized.
This is only the analysis part. The information is not used for anything yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127698 91177308-0d34-0410-b5e6-96231b3b80d8
Remove the unused reserved_ bit vector, no functional change intended.
This doesn't break 'svn blame', this file really is all my fault.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127607 91177308-0d34-0410-b5e6-96231b3b80d8
This allows the allocator to free any resources used by the virtual register,
including physical register assignments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127560 91177308-0d34-0410-b5e6-96231b3b80d8
Live range splitting can create a number of small live ranges containing only a
single real use. Spill these small live ranges along with the large range they
are connected to with copies. This enables memory operand folding and maximizes
the spill to fill distance.
Work in progress with known bugs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127529 91177308-0d34-0410-b5e6-96231b3b80d8
This will we used for keeping register allocator data structures up to date
while LiveRangeEdit is trimming live intervals.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127300 91177308-0d34-0410-b5e6-96231b3b80d8
physical register numbers.
This makes the hack used in LiveInterval official, and lets LiveInterval be
oblivious of stack slots.
The isPhysicalRegister() and isVirtualRegister() predicates don't know about
this, so when a variable may contain a stack slot, isStackSlot() should always
be tested first.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123128 91177308-0d34-0410-b5e6-96231b3b80d8
use before rematerializing the load.
This allows us to produce:
addps LCPI0_1(%rip), %xmm2
Instead of:
movaps LCPI0_1(%rip), %xmm3
addps %xmm3, %xmm2
Saving a register and an instruction. The standard spiller already knows how to
do this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122133 91177308-0d34-0410-b5e6-96231b3b80d8
createMachineVerifierPass and MachineFunction::verify.
The banner is printed before the machine code dump, just like the printer pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122113 91177308-0d34-0410-b5e6-96231b3b80d8
The spiller should only spill. The register allocator will drive live range
splitting, it has the needed information about register pressure and
interferences.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121590 91177308-0d34-0410-b5e6-96231b3b80d8