Failure: undefined symbol 'Lline_table_start0'.
Root-cause: we use a symbol subtraction to calculate at_stmt_list, but
the line table entries are not dumped in the assembly.
Fix: use zero instead of a symbol subtraction for Compile Unit 0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174479 91177308-0d34-0410-b5e6-96231b3b80d8
We generate one line table for each compilation unit in the object file.
Reviewed by Eric and Kevin.
rdar://problem/13067005
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174445 91177308-0d34-0410-b5e6-96231b3b80d8
base point of a load, and the overall alignment of the load. This caused infinite loops in DAG combine with the
original application of this patch.
ORIGINAL COMMIT LOG:
When the target-independent DAGCombiner inferred a higher alignment for a load,
it would replace the load with one with the higher alignment. However, it did
not place the new load in the worklist, which prevented later DAG combines in
the same phase (for example, target-specific combines) from ever seeing it.
This patch corrects that oversight, and updates some tests whose output changed
due to slightly different DAGCombine outputs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174431 91177308-0d34-0410-b5e6-96231b3b80d8
All targets are now adding return value registers as implicit uses on
return instructions, and there is no longer a need for the live out
lists.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174417 91177308-0d34-0410-b5e6-96231b3b80d8
Now that return value registers are return instruction uses, there is no
need for special treatment of return blocks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174416 91177308-0d34-0410-b5e6-96231b3b80d8
It caused hangups in compiling clang/lib/Parse/ParseDecl.cpp and clang/lib/Driver/Tools.cpp in stage2 on some hosts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174374 91177308-0d34-0410-b5e6-96231b3b80d8
it would replace the load with one with the higher alignment. However, it did
not place the new load in the worklist, which prevented later DAG combines in
the same phase (for example, target-specific combines) from ever seeing it.
This patch corrects that oversight, and updates some tests whose output changed
due to slightly different DAGCombine outputs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174343 91177308-0d34-0410-b5e6-96231b3b80d8
Per discussion in rdar://13127907, we should emit a hard error only if
people write code where the requested alignment is larger than achievable
and assumes the low bits are zeros. A warning should be good enough when
we are not sure if the source code assumes the low bits are zeros.
rdar://13127907
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174336 91177308-0d34-0410-b5e6-96231b3b80d8
This required disabling a PowerPC optimization that did the following:
input:
x = BUILD_VECTOR <i32 16, i32 16, i32 16, i32 16>
lowered to:
tmp = BUILD_VECTOR <i32 8, i32 8, i32 8, i32 8>
x = ADD tmp, tmp
The add now gets folded immediately and we're back at the BUILD_VECTOR we
started from. I don't see a way to fix this currently so I left it disabled
for now.
Fix some trivially foldable X86 tests too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174325 91177308-0d34-0410-b5e6-96231b3b80d8
We used to create children DIEs for a scope, then check whether ScopeDIE is
null. If ScopeDIE is null, the children DIEs will be dangling. Other DIEs can
link to those dangling DIEs, which are not emitted at all, causing dwarf error.
The current testing case is 4k lines, from MultiSource/BenchMark/McCat/09-vor.
rdar://problem/13071959
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174084 91177308-0d34-0410-b5e6-96231b3b80d8
conditions are met:
1. They share the same operand and are in the same BB.
2. Both outputs are used.
3. The target has a native instruction that maps to ISD::FSINCOS node or
the target provides a sincos library call.
Implemented the generic optimization in sdisel and enabled it for
Mac OSX. Also added an additional optimization for x86_64 Mac OSX by
using an alternative entry point __sincos_stret which returns the two
results in xmm0 / xmm1.
rdar://13087969
PR13204
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173755 91177308-0d34-0410-b5e6-96231b3b80d8
The common code in the post-RA scheduler to break anti-dependencies on the
critical path contained a flaw. In the reported case, an anti-dependency
between the overlapping registers %X4 and %R4 exists:
%X29<def> = OR8 %X4, %X4
%R4<def>, %X3<def,dead,tied3> = LBZU 1, %X3<kill,tied1>
The unpatched code breaks the dependency by replacing %R4 and its uses
with %R3, the first register on the available list. However, %R3 and
%X3 overlap, so this creates two overlapping definitions on the same
instruction.
The fix is straightforward, preventing selection of a register that
overlaps any other defined register on the same instruction.
The test case is reduced from the bug report, and verifies that we no
longer produce "lbzu 3, 1(3)" when breaking this anti-dependency.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173706 91177308-0d34-0410-b5e6-96231b3b80d8
Fix that by adding a cast to the shift expander. This came up with vector shifts
on sse-less X86 CPUs.
<2 x i64> = shl <2 x i64> <2 x i64>
-> i64,i64 = shl i64 i64; shl i64 i64
-> i32,i32,i32,i32 = shl_parts i32 i32 i64; shl_parts i32 i32 i64
Now we cast the last two i64s to the right type. Fixes the crash in PR14668.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173615 91177308-0d34-0410-b5e6-96231b3b80d8
with an initial number of elements, instead of DenseMap, which has
zero initial elements, in order to avoid the copying of elements
when the size changes and to avoid allocating space every time
LegalizeTypes is run. This patch will not affect the memory footprint,
because DenseMap will increase the element size to 64
when the first element is added.
Patch by Wan Xiaofei.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173448 91177308-0d34-0410-b5e6-96231b3b80d8
Maintain separate per-node and per-tree book-keeping.
Track all instructions above a DAG node including nested subtrees.
Seperately track instructions within a subtree.
Record subtree parents.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173426 91177308-0d34-0410-b5e6-96231b3b80d8
Allow the strategy to select SchedDFS. Allow the results of SchedDFS
to affect initialization of the scheduler state.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173425 91177308-0d34-0410-b5e6-96231b3b80d8
This is mostly refactoring, along with adding an instruction count
within the subtrees and ensuring we only look at data edges.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173420 91177308-0d34-0410-b5e6-96231b3b80d8
For sanity, create a root when NumDataSuccs >= 4. Splitting large
subtrees will no longer be detrimental after my next checkin to handle
nested tree. A magic number of 4 is fine because single subtrees
seldom rejoin more than this. It makes subtrees easier to visualize
and heuristics more sane.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173399 91177308-0d34-0410-b5e6-96231b3b80d8
Allow schedulers to order DAG edges by critical path. This makes
DFS-based heuristics more stable and effective.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173317 91177308-0d34-0410-b5e6-96231b3b80d8
The requirements of the strong heuristic are:
* A Protector is required for functions which contain an array, regardless of
type or length.
* A Protector is required for functions which contain a structure/union which
contains an array, regardless of type or length. Note, there is no limit to
the depth of nesting.
* A protector is required when the address of a local variable (i.e., stack
based variable) is exposed. (E.g., such as through a local whose address is
taken as part of the RHS of an assignment or a local whose address is taken as
part of a function argument.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173231 91177308-0d34-0410-b5e6-96231b3b80d8
SSPStrong applies a heuristic to insert stack protectors in these situations:
* A Protector is required for functions which contain an array, regardless of
type or length.
* A Protector is required for functions which contain a structure/union which
contains an array, regardless of type or length. Note, there is no limit to
the depth of nesting.
* A protector is required when the address of a local variable (i.e., stack
based variable) is exposed. (E.g., such as through a local whose address is
taken as part of the RHS of an assignment or a local whose address is taken as
part of a function argument.)
This patch implements the SSPString attribute to be equivalent to
SSPRequired. This will change in a subsequent patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173230 91177308-0d34-0410-b5e6-96231b3b80d8
Previously we tried to infer it from the bit width size, with an added
IsIEEE argument for the PPC/IEEE 128-bit case, which had a default
value. This default value allowed bugs to creep in, where it was
inappropriate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173138 91177308-0d34-0410-b5e6-96231b3b80d8
A SparseMultiSet adds multiset behavior to SparseSet, while retaining SparseSet's desirable properties. Essentially, SparseMultiSet provides multiset behavior by storing its dense data in doubly linked lists that are inlined into the dense vector. This allows it to provide good data locality as well as vector-like constant-time clear() and fast constant time find(), insert(), and erase(). It also allows SparseMultiSet to have a builtin recycler rather than keeping SparseSet's behavior of always swapping upon removal, which allows it to preserve more iterators. It's often a better alternative to a SparseSet of a growable container or vector-of-vector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173064 91177308-0d34-0410-b5e6-96231b3b80d8