fairly systematic way in instcombine. Some of these cases were already dealt
with, in which case I removed the existing code. The case of Add has a bunch of
funky logic which covers some of this plus a few variants (considers shifts to be
a form of multiplication), which I didn't touch. The simplification performed is:
A*B+A*C -> A*(B+C). The improvement is to do this in cases that were not already
handled [such as A*B-A*C -> A*(B-C), which was reported on the mailing list], and
also to do it more often by not checking for "only one use" if "B+C" simplifies.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120024 91177308-0d34-0410-b5e6-96231b3b80d8
state. Previously Thumb2 would restore sp from fp like this:
mov sp, r7
sub, sp, #4
If an interrupt is taken after the 'mov' but before the 'sub', callee-saved
registers might be clobbered by the interrupt handler. Instead, try
restoring directly from sp:
add sp, #4
Or, if necessary (with VLA, etc.) use a scratch register to compute sp and
then restore it:
sub.w r4, r7, #8
mov sp, r7
rdar://8465407
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119977 91177308-0d34-0410-b5e6-96231b3b80d8
folding improvements: if P points to a type of size zero, turn "gep P, N" into "P".
More generally, if a gep index type has size zero, instcombine could replace the
index with zero, but that is not done here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119942 91177308-0d34-0410-b5e6-96231b3b80d8
void a(int x) { if (((1<<x)&8)==0) b(); }
into "x != 3", which occurs over 100 times in 403.gcc but in no
other program in llvm-test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119922 91177308-0d34-0410-b5e6-96231b3b80d8
allowing the memcpy to be eliminated.
Unfortunately, the requirements on byval's without explicit
alignment are really weak and impossible to predict in the
mid-level optimizer, so this doesn't kick in much with current
frontends. The fix is to change clang to set alignment on all
byval arguments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119916 91177308-0d34-0410-b5e6-96231b3b80d8
DAGCombine from making an illegal transformation of bitcast of a scalar to a
vector into a scalar_to_vector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119819 91177308-0d34-0410-b5e6-96231b3b80d8
lr" instruction cannot be tested just yet. It requires matching a "condition
code", but adding one of those makes things go south quickly...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119774 91177308-0d34-0410-b5e6-96231b3b80d8
if the extension types were not the same. The result was that if you
fed a select with sext and zext loads, as in the testcase, then it
would get turned into a zext (or sext) of the select, which is wrong
in the cases when it should have been an sext (resp. zext). Reported
and diagnosed by Sebastien Deldon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119728 91177308-0d34-0410-b5e6-96231b3b80d8
preserves LCSSA form out of ScalarEvolution and into the LoopInfo
class. Use it to check that SimplifyInstruction simplifications
are not breaking LCSSA form. Fixes PR8622.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119727 91177308-0d34-0410-b5e6-96231b3b80d8
Remove movePastCSLoadStoreOps and associated code for simple pointer
increments. Update routines that depended upon other opcodes for save/restore.
Adjust all testcases accordingly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119725 91177308-0d34-0410-b5e6-96231b3b80d8
this was a tree of hashtables, and a query recursed into the table for the immediate dominator ad infinitum
if the initial lookup failed. This led to really bad performance on tall, narrow CFGs.
We can instead replace it with what is conceptually a multimap of value numbers to leaders (actually
represented by a hashtable with a list of Value*'s as the value type), and then
determine which leader from that set to use very cheaply thanks to the DFS numberings maintained by
DominatorTree. Because there are typically few duplicates of a given value, this scan tends to be
quite fast. Additionally, we use a custom linked list and BumpPtr allocation to avoid any unnecessary
allocation in representing the value-side of the multimap.
This change brings with it a 15% (!) improvement in the total running time of GVN on 403.gcc, which I
think is pretty good considering that includes all the "real work" being done by MemDep as well.
The one downside to this approach is that we can no longer use GVN to perform simple conditional progation,
but that seems like an acceptable loss since we now have LVI and CorrelatedValuePropagation to pick up
the slack. If you see conditional propagation that's not happening, please file bugs against LVI or CVP.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119714 91177308-0d34-0410-b5e6-96231b3b80d8
refusing to optimize two memcpy's like this:
copy A <- B
copy C <- A
if it couldn't prove that noalias(B,C). We can eliminate
the copy by producing a memmove instead of memcpy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119694 91177308-0d34-0410-b5e6-96231b3b80d8
if it is passed as a byval argument. The byval argument will just be a
read, so it is safe to read from the original global instead. This allows
us to promote away the %agg.tmp alloca in PR8582
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119686 91177308-0d34-0410-b5e6-96231b3b80d8
and testing is easier. A good example is the unknown-location.ll test that
now can just look for ".loc 1 0 0". We also don't use a DW_LNE_set_address for
every address change anymore.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119613 91177308-0d34-0410-b5e6-96231b3b80d8
memset; we may need it to decide between MOVAPS and MOVUPS
later. Adjust a test that was looking for wrong code.
PR 3866 / 8675131.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119605 91177308-0d34-0410-b5e6-96231b3b80d8
appear to differ on Linux. Try to make them pass on Linux.
Would be good for a Linux person to review this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119572 91177308-0d34-0410-b5e6-96231b3b80d8
It is generally not sufficient to check if the starting offset is in range
of the maximum offset that can be efficiently used for the target.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119565 91177308-0d34-0410-b5e6-96231b3b80d8
This makes it more clear that the symbol is an internal, compiler-generated
name and gives a little more description about its contents.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119564 91177308-0d34-0410-b5e6-96231b3b80d8
It was mistakenly looking at the pointer type when checking for the size of
global variables. This is a partial fix for Radar 8673120.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119563 91177308-0d34-0410-b5e6-96231b3b80d8
and xor. The 32-bit move immediates can be hoisted out of loops by machine
LICM but the isel hacks were preventing them.
Instead, let peephole optimization pass recognize registers that are defined by
immediates and the ARM target hook will fold the immediates in.
Other changes include 1) do not fold and / xor into cmp to isel TST / TEQ
instructions if there are multiple uses. This happens when the 'and' is live
out, machine sink would have sinked the computation and that ends up pessimizing
code. The peephole pass would recognize situations where the 'and' can be
toggled to define CPSR and eliminate the comparison anyway.
2) Move peephole pass to after machine LICM, sink, and CSE to avoid blocking
important optimizations.
rdar://8663787, rdar://8241368
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119548 91177308-0d34-0410-b5e6-96231b3b80d8
instructions have to distinguish between lists of single- and double-precision
registers in order for the ASM matcher to do a proper job. In all other
respects, a list of single- or double-precision registers are the same as a list
of GPR registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119460 91177308-0d34-0410-b5e6-96231b3b80d8
over a phi node by applying it to each operand may be wrong if the
operation and the phi node are mutually interdependent (the testcase
has a simple example of this). So only do this transform if it would
be correct to perform the operation in each predecessor of the block
containing the phi, i.e. if the other operands all dominate the phi.
This should fix the FFMPEG snow.c regression reported by İsmail Dönmez.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119347 91177308-0d34-0410-b5e6-96231b3b80d8
The live range of a register defined by an early clobber starts at the use slot,
not the def slot.
Except when it is an early clobber tied to a use operand. Then it starts at the
def slot like a standard def.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119305 91177308-0d34-0410-b5e6-96231b3b80d8
live ranges for the spill register are also defined at the use slot instead of
the normal def slot.
This fixes PR8612 for the inline spiller. A use was being allocated to the same
register as a spilled early clobber def.
This problem exists in all the spillers. A fix for the standard spiller is
forthcoming.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119182 91177308-0d34-0410-b5e6-96231b3b80d8
variable if recursing fails to simplify it.
Factor AliasedSymbol to be a method of MCSymbol.
Update MCAssembler::EvaluateFixup to match the change in
EvaluateAsRelocatableImpl.
Remove the WeakRefExpr hack, as the object writer now sees the weakref with
no extra effort needed.
Nothing else is using MCTargetExpr, but keep it for now.
Now that the ELF writer sees relocations with aliases, handle
.weak foo2
foo2:
.weak bar2
.set bar2,foo2
.quad bar2
the same way gas does and produce a relocation with bar2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119152 91177308-0d34-0410-b5e6-96231b3b80d8
This moves most of the isUsed logic to the MCSymbol itself. With this we
get a bit more relaxed about allowing definitions after uses: uses that
don't evaluate their argument immediately (jmp foo) are accepted.
ddunbar, this was the smallest compromise I could think of that lets us
accept gcc (and clang!) assembly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119144 91177308-0d34-0410-b5e6-96231b3b80d8
offload the work to hasConstantValue rather than do something more
complicated (such handling mutually recursive phis) because (1) it is
not clear it is worth it; and (2) if it is worth it, maybe such logic
would be better placed in hasConstantValue. Adjust some GVN tests
which are now cleaned up much further (eg: all phi nodes are removed).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119043 91177308-0d34-0410-b5e6-96231b3b80d8
SimplifyAssociativeOrCommutative) "(A op C1) op C2" -> "A op (C1 op C2)",
which previously was only done if C1 and C2 were constants, to occur whenever
"C1 op C2" simplifies (a la InstructionSimplify). Since the simplifying operand
combination can no longer be assumed to be the right-hand terms, consider all of
the possible permutations. When compiling "gcc as one big file", transform 2
(i.e. using right-hand operands) fires about 4000 times but it has to be said
that most of the time the simplifying operands are both constants. Transforms
3, 4 and 5 each fired once. Transform 6, which is an existing transform that
I didn't change, never fired. With this change, the testcase is now optimized
perfectly with one run of instcombine (previously it required instcombine +
reassociate + instcombine, and it may just have been luck that this worked).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119002 91177308-0d34-0410-b5e6-96231b3b80d8