Commit Graph

1146 Commits

Author SHA1 Message Date
Rafael Espindola
bd490c174e Use the vanilla func_end symbol for .size.
No need to create yet another temp symbol.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231198 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-04 01:35:23 +00:00
Kit Barton
40057e8ee8 Add the following 64-bit vector integer arithmetic instructions added in POWER8:
vaddudm
vsubudm
vmulesw
vmulosw
vmuleuw
vmulouw
vmuluwm
vmaxsd
vmaxud
vminsd
vminud
vcmpequd
vcmpequd.
vcmpgtsd
vcmpgtsd.
vcmpgtud
vcmpgtud.
vrld
vsld
vsrd
vsrad

Phabricator review: http://reviews.llvm.org/D7959


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231115 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-03 19:55:45 +00:00
Duncan P. N. Exon Smith
b056aa798d DebugInfo: Move new hierarchy into place
Move the specialized metadata nodes for the new debug info hierarchy
into place, finishing off PR22464.  I've done bootstraps (and all that)
and I'm confident this commit is NFC as far as DWARF output is
concerned.  Let me know if I'm wrong :).

The code changes are fairly mechanical:

  - Bumped the "Debug Info Version".
  - `DIBuilder` now creates the appropriate subclass of `MDNode`.
  - Subclasses of DIDescriptor now expect to hold their "MD"
    counterparts (e.g., `DIBasicType` expects `MDBasicType`).
  - Deleted a ton of dead code in `AsmWriter.cpp` and `DebugInfo.cpp`
    for printing comments.
  - Big update to LangRef to describe the nodes in the new hierarchy.
    Feel free to make it better.

Testcase changes are enormous.  There's an accompanying clang commit on
its way.

If you have out-of-tree debug info testcases, I just broke your build.

  - `upgrade-specialized-nodes.sh` is attached to PR22564.  I used it to
    update all the IR testcases.
  - Unfortunately I failed to find way to script the updates to CHECK
    lines, so I updated all of these by hand.  This was fairly painful,
    since the old CHECKs are difficult to reason about.  That's one of
    the benefits of the new hierarchy.

This work isn't quite finished, BTW.  The `DIDescriptor` subclasses are
almost empty wrappers, but not quite: they still have loose casting
checks (see the `RETURN_FROM_RAW()` macro).  Once they're completely
gutted, I'll rename the "MD" classes to "DI" and kill the wrappers.  I
also expect to make a few schema changes now that it's easier to reason
about everything.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231082 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-03 17:24:31 +00:00
Bill Schmidt
88bbdc790e Regenerated test case from pr 230801 for change in LLVM IR syntax
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230811 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 23:29:57 +00:00
Bill Schmidt
52a5087a4b Revert test case until it can be fixed
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230803 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 22:31:14 +00:00
Bill Schmidt
0e1e8e2f62 [PowerPC] Fix PR22711 - Misaligned .toc section
Straightforward patch to emit an alignment directive when emitting a
TOC entry.  The test case was generated from the test in PR22711 that
demonstrated a misaligned .toc section.  The object code is run
through llvm-readobj to verify that the correct alignment has been
applied to the .toc section.

Thanks to Ulrich Weigand for running down where the fix was needed.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230801 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 22:14:10 +00:00
David Blaikie
7c9c6ed761 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230794 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 21:17:42 +00:00
Hal Finkel
e03aac601f [PowerPC] Use vector types for memcpy and friends (sometimes)
When using Altivec, we can use vector loads and stores for aligned memcpy and
friends. Starting with the P7 and VXS, we have reasonable unaligned vector
stores. Starting with the P8, we have fast unaligned loads too.

For QPX, we use vector loads are stores, but only for aligned memory accesses.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230788 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:58:28 +00:00
David Blaikie
198d8baafb [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
Mehdi Amini
26d628d6ce Change the fast-isel-abort option from bool to int to enable "levels"
Summary:
Currently fast-isel-abort will only abort for regular instructions,
and just warn for function calls, terminators, function arguments.
There is already fast-isel-abort-args but nothing for calls and
terminators.

This change turns the fast-isel-abort options into an integer option,
so that multiple levels of strictness can be defined.
This will help no being surprised when the "abort" option indeed does
not abort, and enables the possibility to write test that verifies
that no intrinsics are forgotten by fast-isel.

Reviewers: resistor, echristo

Subscribers: jfb, llvm-commits

Differential Revision: http://reviews.llvm.org/D7941

From: Mehdi Amini <mehdi.amini@apple.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230775 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 18:32:11 +00:00
Hal Finkel
7840990de8 [PowerPC] Make LDtocL and friends invariant loads
LDtocL, and other loads that roughly correspond to the TOC_ENTRY SDAG node,
represent loads from the TOC, which is invariant. As a result, these loads can
be hoisted out of loops, etc. In order to do this, we need to generate
GOT-style MMOs for TOC_ENTRY, which requires treating it as a legitimate memory
intrinsic node type. Once this is done, the MMO transfer is automatically
handled for TableGen-driven instruction selection, and for nodes generated
directly in PPCISelDAGToDAG, we need to transfer the MMOs manually.

Also, we were not transferring MMOs associated with pre-increment loads, so do
that too.

Lastly, this fixes an exposed bug where R30 was not added as a defined operand of
UpdateGBR.

This problem was highlighted by an example (used to generate the test case)
posted to llvmdev by Francois Pichet.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230553 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-25 21:36:59 +00:00
Hal Finkel
d37914a662 [PowerPC] Add triples to QPX tests
Some of these tests fail on Darwin systems because of a lack of a triple;
fix that.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230421 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-25 01:26:59 +00:00
Hal Finkel
f8d179ba76 [PowerPC] Add support for the QPX vector instruction set
This adds support for the QPX vector instruction set, which is used by the
enhanced A2 cores on the IBM BG/Q supercomputers. QPX vectors are 256 bytes
wide, holding 4 double-precision floating-point values. Boolean values, modeled
here as <4 x i1> are actually also represented as floating-point values
(essentially  { -1, 1 } for { false, true }). QPX shares many features with
Altivec and VSX, but is distinct from both of them. One major difference is
that, instead of adding completely-separate vector registers, QPX vector
registers are extensions of the scalar floating-point registers (lane 0 is the
corresponding scalar floating-point value). The operations supported on QPX
vectors mirrors that supported on the scalar floating-point values (with some
additional ones for permutations and logical/comparison operations).

I've been maintaining this support out-of-tree, as part of the bgclang project,
for several years. This is not the entire bgclang patch set, but is most of the
subset that can be cleanly integrated into LLVM proper at this time. Adding
this to the LLVM backend is part of my efforts to rebase bgclang to the current
LLVM trunk, but is independently useful (especially for codes that use LLVM as
a JIT in library form).

The assembler/disassembler test coverage is complete. The CodeGen test coverage
is not, but I've included some tests, and more will be added as follow-up work.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230413 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-25 01:06:45 +00:00
Kit Barton
3e00ca983c I incorrectly marked the VORC instruction as isCommutable when I added it.
This fix removes the VORC instruction definition from the isCommutable block.

Phabricator review: http://reviews.llvm.org/D7772


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230020 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-20 15:54:58 +00:00
Hal Finkel
2c5f9584ba [PowerPC] Loop Data Prefetching for the BG/Q
The IBM BG/Q supercomputer's A2 cores have a hardware prefetching unit, the
L1P, but it does not prefetch directly into the A2's L1 cache. Instead, it
prefetches into its own L1P buffer, and the latency to access that buffer is
significantly higher than that to the L1 cache (although smaller than the
latency to the L2 cache). As a result, especially when multiple hardware
threads are not actively busy, explicitly prefetching data into the L1 cache is
advantageous.

I've been using this pass out-of-tree for data prefetching on the BG/Q for well
over a year, and it has worked quite well. It is enabled by default only for
the BG/Q, but can be enabled for other cores as well via a command-line option.

Eventually, we might want to add some TTI interfaces and move this into
Transforms/Scalar (there is nothing particularly target dependent about it,
although only machines like the BG/Q will benefit from its simplistic
strategy).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229966 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-20 05:08:21 +00:00
Kit Barton
31840a62af This patch adds the VSX logical instructions introduced in the Power ISA 2.07. It also removes the added complexity that favors VMX versions of the three instructions.
Phabricator review: http://reviews.llvm.org/D7616

Commiting on Nemanja's behalf.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229694 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-18 16:21:46 +00:00
Eric Christopher
fb031eee53 Move ABI handling and 64-bitness to the PowerPC target machine.
This required changing how the computation of the ABI is handled
and how some of the checks for ABI/target are done.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229471 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-17 06:45:15 +00:00
Hal Finkel
ba51ae6864 [PowerPC] Support non-direct-sub/superclass VSX copies
Our register allocation has become better recently, it seems, and is now
starting to generate cross-block copies into inflated register classes. These
copies are not transformed into subregister insertions/extractions by the
PPCVSXCopy class, and so need to be handled directly by
PPCInstrInfo::copyPhysReg. The code to do this was *almost* there, but not
quite (it was unnecessarily restricting itself to only the direct
sub/super-register-class case (not copying between, for example, something in
VRRC and the lower-half of VSRC which are super-registers of F8RC).

Triggering this behavior manually is difficult; I'm including two
bugpoint-reduced test cases from the test suite.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229457 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-16 23:46:30 +00:00
Andrea Di Biagio
59d115311a [CodeGenPrepare] Removed duplicate logic. SimplifyCFG already knows how to speculate calls to cttz/ctlz.
SimplifyCFG now knows how to speculate calls to intrinsic cttz/ctlz that are
'cheap' for the target. Therefore, some of the logic in CodeGenPrepare
that was originally added at revision 224899 can now be removed.

This patch is basically a no functional change. It removes the duplicated
logic in CodeGenPrepare and converts all the existing target specific tests
for cttz/ctlz into SimplifyCFG tests.

Differential Revision: http://reviews.llvm.org/D7608


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229105 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-13 14:15:48 +00:00
Hal Finkel
8452d01224 [SDAG] Don't try to use FP_EXTEND/FP_ROUND for int<->fp promotions
The PowerPC backend has long promoted some floating-point vector operations
(such as select) to integer vector operations. Unfortunately, this behavior was
broken by r216555. When using FP_EXTEND/FP_ROUND for promotions, we must check
that both the old and new types are floating-point types. Otherwise, we must
use BITCAST as we did prior to r216555 for everything.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228969 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-12 22:43:52 +00:00
Hal Finkel
091acf253b [PowerPC] Mark jumps as expensive (using using CR bits)
On PowerPC, which has a full set of logical operations on (its multiple sets
of) condition-register bits, it is not profitable to break of complex
conditions feeding a jump into multiple jumps. We can turn off this feature of
CGP/SDAGBuilder by marking jumps as "expensive".

P7 test-suite speedups (no regressions):
MultiSource/Benchmarks/FreeBench/pcompress2/pcompress2
	-0.626647% +/- 0.323583%
MultiSource/Benchmarks/Olden/power/power
	-18.2821% +/- 8.06481%

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228895 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-12 01:02:52 +00:00
Daniel Jasper
363b645818 Fix overly prescriptive test that broken on Mac after r228725.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228742 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-10 20:49:05 +00:00
Bill Schmidt
49b3971b70 [PowerPC] Fix reverted patch r227976 to avoid register assignment issues
See full discussion in http://reviews.llvm.org/D7491.

We now hide the add-immediate and call instructions together in a
separate pseudo-op, which is tagged to define GPR3 and clobber the
call-killed registers.  The PPCTLSDynamicCall pass prior to RA now
expands this op into the two separate addi and call ops, with explicit
definitions of GPR3 on both instructions, and explicit clobbers on the
call instruction.  The pass is now marked as requiring and preserving
the LiveIntervals and SlotIndexes analyses, and fixes these up after
the replacement sequences are introduced.

Self-hosting has been verified on LE P8 and BE P7 with various
optimization levels, etc.  It has also been verified with the
--no-tls-optimize flag workaround removed.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228725 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-10 19:09:05 +00:00
Kit Barton
f60b0de42a This change implements the following three logical vector operations:
veqv (vector equivalence)
vnand
vorc
I increased the AddedComplexity for these instructions to 500 to ensure they are generated instead of issuing other VSX instructions.


Phabricator review: http://reviews.llvm.org/D7469


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228580 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-09 17:03:18 +00:00
Hal Finkel
05bd43dc6e [PowerPC] Handle loop predecessor invokes
If a loop predecessor has an invoke as its terminator, and the return value
from that invoke is used to determine the loop iteration space, then we can't
insert a computation based on that value in the loop predecessor prior to the
terminator (oops). If there's such an invoke, or just no predecessor for that
matter, insert a new loop preheader.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228488 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-07 07:32:58 +00:00
Hal Finkel
9ce4011708 [PowerPC] Fixup incomplete revert of test/CodeGen/PowerPC/tls-pic.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228467 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-06 23:30:06 +00:00
Hal Finkel
9168f717c9 Revert "r227976 - [PowerPC] Yet another approach to __tls_get_addr" and related fixups
Unfortunately, even with the workaround of disabling the linker TLS
optimizations in Clang restored (which has already been done), this still
breaks self-hosting on my P7 machine (-O3 -DNDEBUG -mcpu=native).

Bill is currently working on an alternate implementation to address the TLS
issue in a way that also fully elides the linker bug (which, unfortunately,
this approach did not fully), so I'm reverting this now.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228460 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-06 23:07:40 +00:00
Hal Finkel
b8a6712c27 [PowerPC] Prepare loops for pre-increment loads/stores
PowerPC supports pre-increment load/store instructions (except for Altivec/VSX
vector load/stores). Using these on embedded cores can be very important, but
most loops are not naturally set up to use them. We can often change that,
however, by placing loops into a non-canonical form. Generically, this means
transforming loops like this:

  for (int i = 0; i < n; ++i)
    array[i] = c;

to look like this:

  T *p = array[-1];
  for (int i = 0; i < n; ++i)
    *++p = c;

the key point is that addresses accessed are pulled into dedicated PHIs and
"pre-decremented" in the loop preheader. This allows the use of pre-increment
load/store instructions without loop peeling.

A target-specific late IR-level pass (running post-LSR), PPCLoopPreIncPrep, is
introduced to perform this transformation. I've used this code out-of-tree for
generating code for the PPC A2 for over a year. Somewhat to my surprise,
running the test suite + externals on a P7 with this transformation enabled
showed no performance regressions, and one speedup:

External/SPEC/CINT2006/483.xalancbmk/483.xalancbmk
	-2.32514% +/- 1.03736%

So I'm going to enable it on everything for now. I was surprised by this
because, on the POWER cores, these pre-increment load/store instructions are
cracked (and, thus, harder to schedule effectively). But seeing no regressions,
and feeling that it is generally easier to split instructions apart late than
it is to combine them late, this might be the better approach regardless.

In the future, we might want to integrate this functionality into LSR (but
currently LSR does not create new PHI nodes, so (for that and other reasons)
significant work would need to be done).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228328 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-05 18:43:00 +00:00
Hal Finkel
885b67a5c3 [PowerPC] Generate pre-increment floating-point ld/st instructions
PowerPC supports pre-increment floating-point load/store instructions, both r+r
and r+i, and we had patterns for them, but they were not marked as legal. Mark
them as legal (and add a test case).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228327 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-05 18:42:53 +00:00
Bill Schmidt
202b6045bf [PowerPC] Implement the vclz instructions for PWR8
Patch by Kit Barton.

Add the vector count leading zeros instruction for byte, halfword,
word, and doubleword sizes.  This is a fairly straightforward addition
after the changes made for vpopcnt:

 1. Add the correct definitions for the various instructions in
    PPCInstrAltivec.td
 2. Make the CTLZ operation legal on vector types when using P8Altivec
    in PPCISelLowering.cpp 

Test Plan

Created new test case in test/CodeGen/PowerPC/vec_clz.ll to check the
instructions are being generated when the CTLZ operation is used in
LLVM.

Check the encoding and decoding in test/MC/PowerPC/ppc_encoding_vmx.s
and test/Disassembler/PowerPC/ppc_encoding_vmx.txt respectively.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228301 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-05 15:24:47 +00:00
Bill Schmidt
b9fc61d031 Add missing test case from r228046
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228182 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-04 20:00:04 +00:00
Bill Schmidt
89e8a17b4d [PowerPC] Handle 32-bit targets properly in PPCTLSDynamicCall.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228116 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-04 05:51:56 +00:00
Bill Schmidt
aeba87d6a6 Disable 32-bit tests in tls-pic.ll until they can be repaired
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227981 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-03 16:57:38 +00:00
Bill Schmidt
b32d6f455f Further revise too-restrictive test CodeGen/PowerPC/tls-pic.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227980 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-03 16:33:55 +00:00
Bill Schmidt
f336df5f3f Further revise too-restrictive test CodeGen/PowerPC/tls-pic.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227978 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-03 16:29:52 +00:00
Bill Schmidt
5114e12df0 Revise too-restrictive test CodeGen/PowerPC/tls-pic.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227977 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-03 16:24:05 +00:00
Bill Schmidt
1123a81009 [PowerPC] Yet another approach to __tls_get_addr
This patch is a third attempt to properly handle the local-dynamic and
global-dynamic TLS models.

In my original implementation, calls to __tls_get_addr were hidden
from view until the asm-printer phase, at which point the underlying
branch-and-link instruction was created with proper relocations.  This
mostly worked well, but I used some repellent techniques to ensure
that the TLS_GET_ADDR nodes at the SD and MI levels correctly received
input from GPR3 and produced output into GPR3.  This proved to work
badly in the presence of multiple TLS variable accesses, with the
copies to and from GPR3 being scheduled incorrectly and generally
creating havoc.

In r221703, I addressed that problem by representing the calls to
__tls_get_addr as true calls during instruction lowering.  This had
the advantage of removing all of the bad hacks and relying on the
existing call machinery to properly glue the copies in place. It
looked like this was going to be the right way to go.

However, as a side effect of the recent discovery of problems with
linker optimizations for TLS, we discovered cases of suboptimal code
generation with this strategy.  The problem comes when tls_get_addr is
called for the same address, and there is a resulting CSE
opportunity.  It turns out that in such cases MachineCSE will common
the addis/addi instructions that set up the input value to
tls_get_addr, but will not common the calls themselves.  MachineCSE
does not have any machinery to common idempotent calls.  This is
perfectly sensible, since presumably this would be done at the IR
level, and introducing calls in the back end isn't commonplace.  In
any case, we end up with two calls to __tls_get_addr when one would
suffice, and that isn't good.

I presumed that the original design would have allowed commoning of
the machine-specific nodes that hid the __tls_get_addr calls, so as
suggested by Ulrich Weigand, I went back to that design and cleaned it
up so that the copies were properly held together by glue
nodes.  However, it turned out that this didn't work either...the
presence of copies to physical registers kept the machine-specific
nodes from being commoned also.

All of which leads to the design presented here.  This is a return to
the original design, except that no attempt is made to introduce
copies to and from GPR3 during instruction lowering.  Virtual registers
are used until prior to register allocation.  At that point, a special
pass is run that identifies the machine-specific nodes that hide the
tls_get_addr calls and introduces the copies to and from GPR3 around
them.  The register allocator then coalesces these copies away.  With
this design, MachineCSE succeeds in commoning tls_get_addr calls where
possible, and we get nice optimal code generation (better than GCC at
the moment, which does not common these calls).

One additional problem must be dealt with:  After introducing the
mentions of the physical register GPR3, the aggressive anti-dependence
breaker sees opportunities to improve scheduling by selecting a
different register instead.  Flags must be used on the instruction
descriptions to tell the anti-dependence breaker to keep its hands in
its pockets.

One thing missing from the original design was recording a definition
of the link register on the GET_TLS_ADDR nodes.  Doing this was found
to be insufficient to force a stack frame to be created, which led to
looping behavior because two different LR values were stored at the
same address.  This appears to have been an oversight in
PPCFrameLowering::determineFrameLayout(), which is repaired here.

Because MustSaveLR() returns true for calls to builtin_return_address,
this changed the expected behavior of
test/CodeGen/PowerPC/retaddr2.ll, which now stacks a frame but
formerly did not.  I've fixed the test case to reflect this.

There are existing TLS tests to catch regressions; the checks in
test/CodeGen/PowerPC/tls-store2.ll proved to be too restrictive in the
face of instruction scheduling with these changes, so I fixed that
up.

I've added a new test case based on the PrettyStackTrace module that
demonstrated the original problem. This checks that we get correct
code generation and that CSE of the calls to __get_tls_addr has taken
place.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227976 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-03 16:16:01 +00:00
Hal Finkel
3bafb64914 [PowerPC] VSX stores don't also read
The VSX store instructions were also picking up an implicit "may read" from the
default pattern, which was an intrinsic (and we don't currently have a way of
specifying write-only intrinsics).

This was causing MI verification to fail for VSX spill restores.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227759 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-01 19:07:41 +00:00
Hal Finkel
ec716cecda [PowerPC] Better scheduling for isel on P7/P8
isel is actually a cracked instruction on the P7/P8, and must start a dispatch
group. The scheduling model should reflect this so that we don't bunch too many
of them together when possible.

Thanks to Bill Schmidt and Pat Haugen for helping to sort this out.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227758 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-01 17:52:16 +00:00
Hal Finkel
8f5c829c1e [PowerPC] Make r2 allocatable on PPC64/ELF for some leaf functions
The TOC base pointer is passed in r2, and we normally reserve this register so
that we can depend on it being there. However, for leaf functions, and
specifically those leaf functions that don't do any TOC access of their own
(which is generally due to accessing the constant pool, using TLS, etc.),
we can treat r2 as an ordinary callee-saved register (it must be callee-saved
because, for local direct calls, the linker will not insert any save/restore
code).

The allocation order has been changed slightly for PPC64/ELF systems to put r2
at the end of the list (while leaving it near the beginning for Darwin systems
to prevent unnecessary output changes). While r2 is allocatable, using it still
requires spill/restore traffic, and thus comes at the end of the list.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227745 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-01 15:03:28 +00:00
Bill Schmidt
a5ea0b50a4 [PowerPC] Complete setting the baseline for ppc64le
Patch by Nemanja Ivanovic.

As was uncovered by the failing test case (when run on non-PPC
platforms), the feature set when compiling with -march=ppc64le was not
being picked up. This change ensures that if the -mcpu option is not
specified, the correct feature set is picked up regardless of whether
we are on PPC or not.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227455 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-29 15:59:09 +00:00
Bill Schmidt
9dbb6a4f63 [PowerPC] Revert ppc64le-aggregates.ll test changes from r227053
It appears we have different behavior with and without -mcpu=pwr8 even
with ppc64le defaulting to POWER8.  The failure appears as follows:

/home/bb/cmake-llvm-x86_64-linux/llvm-project/llvm/test/CodeGen/PowerPC/ppc64le-aggregates.ll:268:14: error: expected string not found in input
; CHECK-DAG: lfs 1, 0([[REG]])
             ^
<stdin>:497:11: note: scanning from here
 ld 3, .LC1@toc@l(3)
          ^
<stdin>:497:11: note: with variable "REG" equal to "3"
 ld 3, .LC1@toc@l(3)
          ^
<stdin>:514:2: note: possible intended match here
 lfs 1, 0(4)
 ^

Reverting this particular test case change.  Nemanja, please have a look
at the reason for the failure.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227055 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-25 18:18:54 +00:00
Bill Schmidt
c536eed4d8 [PowerPC] Reset the baseline for ppc64le to be equivalent to pwr8
Test by Nemanja Ivanovic.

Since ppc64le implies POWER8 as a minimum, it makes sense that the
same features are included. Since the pwr8 processor model will likely
be getting new features until the implementation is complete, I
created a new list to add these updates to. This will include them in
both pwr8 and ppc64le.

Furthermore, it seems that it would make sense to compose the feature
lists for other processor models (pwr3 and up). Per discussion in the
review, I will make this change in a subsequent patch.

In order to test the changes, I've added an additional run step to
test cases that specify -march=ppc64le -mcpu=pwr8 to omit the -mcpu
option. Since the feature lists are the same, the behaviour should be
unchanged.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227053 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-25 18:05:42 +00:00
Hal Finkel
d1f1656447 [PowerPC] Add r2 as an operand for all calls under both PPC64 ELF V1 and V2
Our PPC64 ELF V2 call lowering logic added r2 as an operand to all direct call
instructions in order to represent the dependency on the TOC base pointer
value. Restricting this to ELF V2, however, does not seem to make sense: calls
under ELF V1 have the same dependence, and indirect calls have an r2 dependence
just as direct ones. Make sure the dependence is noted for all calls under both
ELF V1 and ELF V2.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226432 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-19 07:20:27 +00:00
Hal Finkel
a01b583dbc [PowerPC] Initial PPC64 calling-convention changes for fastcc
The default calling convention specified by the PPC64 ELF (V1 and V2) ABI is
designed to work with both prototyped and non-prototyped/varargs functions. As
a result, GPRs and stack space are allocated for every argument, even those
that are passed in floating-point or vector registers.

GlobalOpt::OptimizeFunctions will transform local non-varargs functions (that
do not have their address taken) to use the 'fast' calling convention.

When functions are using the 'fast' calling convention, don't allocate GPRs for
arguments passed in other types of registers, and don't allocate stack space for
arguments passed in registers. Other changes for the fast calling convention
may be added in the future.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226399 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-18 12:08:47 +00:00
Hal Finkel
962cff0c08 [PowerPC] Don't list R11 as a patchpoint scratch register
R11's status is the same under both the PPC64 ELF V1 and V2 ABIs: it is
reserved for use as an "environment pointer" for compilation models that
require such a thing. We don't, we also don't need a second scratch register,
and because we support only "local" patchpoint call targets, we might as well
let R11 be used for anyregcc patchpoints.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226369 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-17 03:57:34 +00:00
Hal Finkel
92cd0ca3b2 [PowerPC] Adjust PatchPoints for ppc64le
Bill Schmidt pointed out that some adjustments would be needed to properly
support powerpc64le (using the ELF V2 ABI). For one thing, R11 is not available
as a scratch register, so we need to use R12. R12 is also available under ELF
V1, so to maintain consistency, I flipped the order to make R12 the first
scratch register in the array under both ABIs.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226247 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-16 04:40:58 +00:00
Hal Finkel
94dc061e85 [PowerPC] Loosen ELFv1 PPC64 func descriptor loads for indirect calls
Function pointers under PPC64 ELFv1 (which is used on PPC64/Linux on the
POWER7, A2 and earlier cores) are really pointers to a function descriptor, a
structure with three pointers: the actual pointer to the code to which to jump,
the pointer to the TOC needed by the callee, and an environment pointer. We
used to chain these loads, and make them opaque to the rest of the optimizer,
so that they'd always occur directly before the call. This is not necessary,
and in fact, highly suboptimal on embedded cores. Once the function pointer is
known, the loads can be performed ahead of time; in fact, they can be hoisted
out of loops.

Now these function descriptors are almost always generated by the linker, and
thus the contents of the descriptors are invariant. As a result, by default,
we'll mark the associated loads as invariant (allowing them to be hoisted out
of loops). I've added a target feature to turn this off, however, just in case
someone needs that option (constructing an on-stack descriptor, casting it to a
function pointer, and then calling it cannot be well-defined C/C++ code, but I
can imagine some JIT-compilation system doing so).

Consider this simple test:
  $ cat call.c

  typedef void (*fp)();
  void bar(fp x) {
    for (int i = 0; i < 1600000000; ++i)
      x();
  }

  $ cat main.c

  typedef void (*fp)();
  void bar(fp x);
  void foo() {}
  int main() {
    bar(foo);
  }

On the PPC A2 (the BG/Q supercomputer), marking the function-descriptor loads
as invariant brings the execution time down to ~8 seconds from ~32 seconds with
the loads in the loop.

The difference on the POWER7 is smaller. Compiling with:

  gcc -std=c99 -O3 -mcpu=native call.c main.c : ~6 seconds [this is 4.8.2]

  clang -O3 -mcpu=native call.c main.c : ~5.3 seconds

  clang -O3 -mcpu=native call.c main.c -mno-invariant-function-descriptors : ~4 seconds
  (looks like we'd benefit from additional loop unrolling here, as a first
   guess, because this is faster with the extra loads)

The -mno-invariant-function-descriptors will be added to Clang shortly.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226207 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-15 21:17:34 +00:00
Duncan P. N. Exon Smith
37ac8d3622 IR: Move MDLocation into place
This commit moves `MDLocation`, finishing off PR21433.  There's an
accompanying clang commit for frontend testcases.  I'll attach the
testcase upgrade script I used to PR21433 to help out-of-tree
frontends/backends.

This changes the schema for `DebugLoc` and `DILocation` from:

    !{i32 3, i32 7, !7, !8}

to:

    !MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8)

Note that empty fields (line/column: 0 and inlinedAt: null) don't get
printed by the assembly writer.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226048 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 22:27:36 +00:00
Bill Schmidt
11abe69e98 [PPC64] Add support for the ICBT instruction on POWER8.
Patch by Kit Barton.

Support for the ICBT instruction is currently present, but limited to
embedded processors. This change adds a new FeatureICBT that can be used
to identify whether the ICBT instruction is available on a specific processor.

Two new tests are added:
 * Positive test to ensure the icbt instruction is present when using
-mcpu=pwr8
 * Negative test to ensure the icbt instruction is not generated when
using -mcpu=pwr7

Both test cases use the Prefetch opcode in LLVM. They are based on the
ppc64-prefetch.ll test case.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226033 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 20:17:10 +00:00