exposed:
GAS doesn't accept "fcomip %st(1)", it requires "fcomip %st(1), %st(0)"
even though st(0) is implicit in all other fp stack instructions.
Fortunately, there is an alias for fcomip named "fcompi" and gas does
accept the default argument for the alias (boggle!).
As such, switch the canonical form of this instruction to "pi" instead
of "ip". This makes the code generator and disassembler generate pi,
avoiding the gas bug.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118356 91177308-0d34-0410-b5e6-96231b3b80d8
It doesn't look like anything is wrong with the checkin,
but the new test cases expose a mem bug in AsmParser.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117087 91177308-0d34-0410-b5e6-96231b3b80d8
sense, when the instruction takes the 16-bit ax register or m16 memory
location. These changes to llvm-mc matches what the darwin assembler allows
for these instructions. Also added the missing flex (without the wait prefix)
and ud2a as an alias to ud2 (still to add ud2b).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117031 91177308-0d34-0410-b5e6-96231b3b80d8
pass that inserted it.
It is no longer necessary to limit the live ranges of FP registers to a single
basic block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108536 91177308-0d34-0410-b5e6-96231b3b80d8
instructions as the Mac OS X darwin assembler. Some of which like 'fcoml'
assembled to different opcodes. While some of the suffixes were just different.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102958 91177308-0d34-0410-b5e6-96231b3b80d8
to input patterns, we can fix X86ISD::CMP and X86ISD::BT as taking
two inputs (which have to be the same type) and *returning an i32*.
This is how the SDNodes get made in the graph, but we weren't able
to model it this way due to deficiencies in the pattern language.
Now we can change things like this:
def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
- [(X86cmp RFP80:$lhs, RFP80:$rhs),
- (implicit EFLAGS)]>; // CC = ST(0) cmp ST(i)
+ [(set EFLAGS, (X86cmp RFP80:$lhs, RFP80:$rhs))]>;
and fix terrible crimes like this:
-def : Pat<(parallel (X86cmp GR8:$src1, 0), (implicit EFLAGS)),
+def : Pat<(X86cmp GR8:$src1, 0),
(TEST8rr GR8:$src1, GR8:$src1)>;
This relies on matching the result of TEST8rr (which is EFLAGS, which is
an implicit def) to the result of X86cmp, an i32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98903 91177308-0d34-0410-b5e6-96231b3b80d8
bunch of associated comments, because it doesn't have anything to do
with DAGs or scheduling. This is another step in decoupling MachineInstr
emitting from scheduling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85517 91177308-0d34-0410-b5e6-96231b3b80d8
All of these do not have patterns (they're for the
disassembler).
Many of the floating-point instructions will probably
be rolled into definitions that have patterns, and may
eventually be superseded by mdefs. So I put them
together and left a comment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81979 91177308-0d34-0410-b5e6-96231b3b80d8
llvm's output .s files will go through gcc -std=c99
without triggering preprocesser errors. Approach
suggested by Daveed Vandevoorde.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48808 91177308-0d34-0410-b5e6-96231b3b80d8
x86-64 return conventions correct, but was never enabled.
We can now do the "right thing" with multiple return values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48635 91177308-0d34-0410-b5e6-96231b3b80d8
isel'ing value preserving FP roundings from one fp stack reg to another
into a noop, instead of stack traffic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48093 91177308-0d34-0410-b5e6-96231b3b80d8
x86 backend where instructions were not marked maystore/mayload, and perf issues where
instructions were not marked neverHasSideEffects. It would be really nice if we could
write patterns for copy instructions.
I have audited all the x86 instructions down to MOVDQAmr. The flags on others and on
other targets are probably not right in all cases, but no clients currently use this
info that are enabled by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45829 91177308-0d34-0410-b5e6-96231b3b80d8
based what flag to set on whether it was already marked as
"isRematerializable". If there was a further check to determine if it's "really"
rematerializable, then I marked it as "mayHaveSideEffects" and created a check
in the X86 back-end similar to the remat one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45132 91177308-0d34-0410-b5e6-96231b3b80d8
for fastcc from X86CallingConv.td. This means that nested functions
are not supported for calling convention 'fastcc'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42934 91177308-0d34-0410-b5e6-96231b3b80d8
keep f32 in SSE registers and f64 in x87. This
is effectively a new codegen mode.
Change addLegalFPImmediate to permit float and
double variants to do different things.
Adjust callers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42246 91177308-0d34-0410-b5e6-96231b3b80d8
SSE mode (all but conversions <-> other FP types, I think):
>>Do not mark all-80-bit operations as "Requires[FPStack]"
(which really means "not SSE").
>>Refactor load-and-extend to facilitate this.
>>Update comments.
>>Handle long double in SSE when computing FP_REG_KILL.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40906 91177308-0d34-0410-b5e6-96231b3b80d8
Last x87 bits for full functionality (not
thoroughly tested, and long doubles do not work
in SSE modes at all - use -mcpu=i486 for now)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40886 91177308-0d34-0410-b5e6-96231b3b80d8