Even at -O0, we fall back to SDAG when we hit intrinsics, and if the intrinsic
is a memset/memcpy/etc. we might normally use vector types. At -O0, this is
probably not a good idea (because, if there is a bug in the lowering code,
there would be no good way to turn it off). At -O0, only use scalar preferred
types.
Related to PR22754.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233755 91177308-0d34-0410-b5e6-96231b3b80d8
extended loads.
Implement the related target lowering hook so that the optimization has a better
estimation of the cost of an extension.
rdar://problem/19267165
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233753 91177308-0d34-0410-b5e6-96231b3b80d8
The existing code in getMemsetValue only handled integer-preferred types when
the fill value was not a constant. Make this more robust in two ways:
1. If the preferred type is a floating-point value, do the mul-splat trick on
the corresponding integer type and then bitcast.
2. If the preferred type is a vector, do the mul-splat trick on one vector
element, and then build a vector out of them.
Fixes PR22754 (although, we should also turn off use of vector types at -O0).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233749 91177308-0d34-0410-b5e6-96231b3b80d8
I suggested this change in D7898 (http://llvm.org/viewvc/llvm-project?view=revision&revision=231354)
It improves the v4i64 case although not optimally. This AVX codegen:
vmovq {{.*#+}} xmm0 = mem[0],zero
vxorpd %ymm1, %ymm1, %ymm1
vblendpd {{.*#+}} ymm0 = ymm0[0],ymm1[1,2,3]
Becomes:
vmovsd {{.*#+}} xmm0 = mem[0],zero
Unfortunately, this doesn't completely solve PR22685. There are still at least 2 problems under here:
We're not handling v32i8 / v16i16.
We're not getting the FP / int domains right for instruction selection.
But since this patch alone appears to do no harm, reduces code duplication, and helps v4i64,
I'm submitting this patch ahead of fixing the above.
Differential Revision: http://reviews.llvm.org/D8341
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233704 91177308-0d34-0410-b5e6-96231b3b80d8
So far, we do not yet support any instruction specific to zEC12.
Most of the facilities added with zEC12 are indeed not very useful
to compiler code generation, but there is one exception: the
miscellaneous-extensions facility provides the RISBGN instruction,
which is a variant of RISBG that does not set the condition code.
Add support for this facility, MC support for RISBGN, and CodeGen
support for prefering RISBGN over RISBG on zEC12, unless we can
actually make use of the condition code set by RISBG.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233690 91177308-0d34-0410-b5e6-96231b3b80d8
We already exploit a number of instructions specific to z196,
but not yet POPCNT. Add support for the population-count
facility, MC support for the POPCNT instruction, CodeGen
support for using POPCNT, and implement the getPopcntSupport
TargetTransformInfo hook.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233689 91177308-0d34-0410-b5e6-96231b3b80d8
This hooks up the TargetTransformInfo machinery for SystemZ,
and provides an implementation of getIntImmCost.
In addition, the patch adds the isLegalICmpImmediate and
isLegalAddImmediate TargetLowering overrides, and updates
a couple of test cases where we now generate slightly
better code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233688 91177308-0d34-0410-b5e6-96231b3b80d8
it more liberally.
SplitVecOp_TRUNCATE has logic for recursively splitting oversize vectors
that need more than one round of splitting to become legal. There are many
other ISD nodes that could benefit from this logic, so factor it out and
use it for FP_TO_UINT,FP_TO_SINT,SINT_TO_FP,UINT_TO_FP and FTRUNC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233681 91177308-0d34-0410-b5e6-96231b3b80d8
We used to miss non-Q YMM integer vectors, and, non-Q/D XMM integer
vectors.
While there, change the v4i32 patterns to prefer MOVNTDQ.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233668 91177308-0d34-0410-b5e6-96231b3b80d8
We used to match the register variant before the immediate when the register
argument could be implicitly zero-extended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233653 91177308-0d34-0410-b5e6-96231b3b80d8
Generate tables in the .xdata section representing what actions to take
when an exception is thrown. This currently fills in state for
cleanups, catch handlers are still unfinished.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233636 91177308-0d34-0410-b5e6-96231b3b80d8
When we expand the RET_ReallyLR pseudo instruction we also need to transfer the
implicit operands.
The return register is an implicit operand and without it the liveness
calculation generates an incorrect live-out set for the patchpoint.
This fixes rdar://problem/19068476.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233635 91177308-0d34-0410-b5e6-96231b3b80d8
BPF has cpu_to_be and cpu_to_le instructions.
For now assume little endian and generate cpu_to_be for ISD::BSWAP.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233620 91177308-0d34-0410-b5e6-96231b3b80d8
Adds a test to verify the behavior that r233153 restored: 'optnone'
does not spuriously disable the DAG combiner, and in fact there are
cases where the DAG combiner must run (even at -O0 or 'optnone') in
order for codegen to succeed.
Differential Revision: http://reviews.llvm.org/D8614
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233584 91177308-0d34-0410-b5e6-96231b3b80d8
When a new SM architecture is introduced, it is only supported by the
current PTX version and later. Make sure we are using at least the
minimum PTX version for the target architecture.
This also removes support for PTX ISA < 3.2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233583 91177308-0d34-0410-b5e6-96231b3b80d8
Compiling the following function with -O0 would crash, since LLVM would
hit an assertion in getTestUnderMaskCond:
int test(unsigned long x)
{
return x >= 0 && x <= 15;
}
Fixed by detecting the case in the caller of getTestUnderMaskCond.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233541 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The 'R' constraint is actually supposed to be much more complicated than
this and is defined in terms of whether it will cause macro expansion in
the assembler. 'R' is getting less useful due to architecture changes and
ought to be replaced by other constraints. We therefore implement 9-bit
offsets which will work for all subtargets and all instructions.
Reviewers: vkalintiris
Reviewed By: vkalintiris
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8440
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233537 91177308-0d34-0410-b5e6-96231b3b80d8
They're harmless and it's easy to generate them from clang, leading to
a crash in LLVM. Found by afl-fuzz.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233500 91177308-0d34-0410-b5e6-96231b3b80d8
Fix testcases that don't pass the verifier after a WIP patch to check
`MDSubprogram` operands more effectively. I found the following issues:
- When `isDefinition: false`, the `variables:` field might point at
`!{i32 786468}`, or at a tuple that pointed at an empty tuple with
the comment "previously: invalid DW_TAG_base_type" (I vaguely recall
adding those comments during an upgrade script). In these cases, I
just dropped the array.
- The `variables:` field might point at something like `!{!{!8}}`,
where `!8` was an `MDLocation`. I removed the extra layer of
indirection.
- Invalid `type:` (not an `MDSubroutineType`).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233466 91177308-0d34-0410-b5e6-96231b3b80d8
Fix debug info in these tests, which started failing with a WIP patch to
verify compile units and types. The problems look like they were all
caused by bitrot. They fell into these categories:
- Using `!{i32 0}` instead of `!{}`.
- Using `!{null}` instead of `!{}`.
- Using `!MDExpression()` instead of `!{}`.
- Using `!8` instead of `!{!8}`.
- `file:` references that pointed at `MDCompileUnit`s instead of the
same `MDFile` as the compile unit.
- `file:` references that were numerically off-by-one or (off-by-ten).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233415 91177308-0d34-0410-b5e6-96231b3b80d8
Tailcalls are only OK with forwarded sret pointers. With explicit sret,
one approximation is to check that the pointer isn't an Instruction, as
in that case it might point into some local memory (alloca). That's not
OK with tailcalls.
Explicit sret counterpart to r233409.
Differential Revison: http://reviews.llvm.org/D8510
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233410 91177308-0d34-0410-b5e6-96231b3b80d8
Expose bpf pseudo load instruction via intrinsic. It is used by front-ends that
can encode file descriptors directly into IR instead of relying on relocations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233396 91177308-0d34-0410-b5e6-96231b3b80d8
nodes.
When a node is terminal it is pushed at the end of the list of the copies to
coalesce instead of being completely ignored. In effect, this reduces its
priority over non-terminal nodes.
Because of that, we do not miss the rematerialization opportunities, nor the
copies that can be merged with more complex, than the terminal rule,
interference checks.
Related to PR22768.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233395 91177308-0d34-0410-b5e6-96231b3b80d8
Change `LLParser` to require a non-null `scope:` field for both
`MDLocation` and `MDLocalVariable`. There's no need to wait for the
verifier for this check. This also allows their `::getImpl()` methods
to assert that the incoming scope is non-null.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233394 91177308-0d34-0410-b5e6-96231b3b80d8
"Fix the MachineScheduler's logic for updating ready times for in-order.
Now the scheduler updates a node's ready time as soon as it is
scheduled, before releasing dependent nodes."
This fix was only made in one variant of the ScheduleDAGMI driver.
Francois de Ferriere reported the issue in the other bit of code where
it was also needed.
I never got around to coming up with a test case, but it's an
obvious fix that shouldn't be delayed any longer.
I'll try to refactor this code a little better.
I did verify performance on a wide variety of targets and saw no
negative impact with this fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233366 91177308-0d34-0410-b5e6-96231b3b80d8
This was discussed a while back and I left it optional for migration. Since it's been far more than the 'week or two' that was discussed, time to actually make this manditory.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233357 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds support for explicitly provided spill slots in the GC arguments of a gc.statepoint. This is somewhat analogous to gcroot, but leverages the STATEPOINT MI node and StackMap infrastructure. The motivation for this is:
1) The stack spilling code for gc.statepoints hasn't advanced as fast as I'd like. One major option is to give up on doing spilling in the backend and do it at the IR level instead. We'd give up the ability to have gc values in registers, but that's a minor cost in practice. We are not neccessarily moving in that direction, but having the ability to prototype such a thing cheaply is interesting.
2) I want to port the gcroot lowering to use the statepoint infastructure. Given the metadata printers for gcroot expect a fixed set of stack roots, it's easiest to just reuse the explicit stack slots and pass them directly to the underlying statepoint.
I'm holding off on the documentation for the new feature until I'm reasonable sure this is going to stick around.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233356 91177308-0d34-0410-b5e6-96231b3b80d8
This test returns nonnative integer types which aren't supported on all targets.
The real issue with the SelectionDAG scheduler is with x86 EFLAGS.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233355 91177308-0d34-0410-b5e6-96231b3b80d8
We don't have any logic to emit those tables yet, so the SDAG lowering
of this intrinsic is just a stub. We can see the intrinsic in the
prepared IR, though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233354 91177308-0d34-0410-b5e6-96231b3b80d8
It can happen (by line CurSU->isPending = true; // This SU is not in
AvailableQueue right now.) that a SUnit is mark as available but is
not in the AvailableQueue. For SUnit being selected for scheduling
both conditions must be met.
This patch mainly defensively protects from invalid removing a node
from a queue. Sometimes nodes are marked isAvailable but are not in
the queue because they have been defered due to some hazard.
Patch by Pawel Bylica!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233351 91177308-0d34-0410-b5e6-96231b3b80d8
Fix testcases whose variables are invalid. I'm working on a patch that
adds `Verifier` checks for `MDLocalVariable` (and `MDGlobalVariable`),
and these failed because:
- `scope:` fields need to point at `MDLocalScope` and can't be null.
- `file:` fields need to point at `MDFile`.
- `inlinedAt:` fields need to point at `MDLocation`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233349 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The ARM backend can use a loop to implement copying byval parameters before
a call. In non-thumb2 mode it uses a constant pool load to materialize the
trip count. For targets that need movt instead (e.g. Native Client), use
the same code as in thumb2 mode to materialize the trip count.
Reviewers: jfb, t.p.northover
Differential Revision: http://reviews.llvm.org/D8442
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233324 91177308-0d34-0410-b5e6-96231b3b80d8