Commit Graph

2079 Commits

Author SHA1 Message Date
Chandler Carruth
b778cbc0c8 [canonicalize] Teach InstCombine to canonicalize loads which are only
ever stored to always use a legal integer type if one is available.

Regardless of whether this particular type is good or bad, it ensures we
don't get weird differences in generated code (and resulting
performance) from "equivalent" patterns that happen to end up using
a slightly different type.

After some discussion on llvmdev it seems everyone generally likes this
canonicalization. However, there may be some parts of LLVM that handle
it poorly and need to be fixed. I have at least verified that this
doesn't impede GVN and instcombine's store-to-load forwarding powers in
any obvious cases. Subtle cases are exactly what we need te flush out if
they remain.

Also note that this IR pattern should already be hitting LLVM from Clang
at least because it is exactly the IR which would be produced if you
used memcpy to copy a pointer or floating point between memory instead
of a variable.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226781 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-22 05:08:12 +00:00
David Majnemer
c070e4e528 InstCombine: Don't strip bitcasts off of callsites marked 'thunk'
The return type of a thunk is meaningless, we just want the arguments
and return value to be forwarded.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226708 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-21 22:32:04 +00:00
Richard Smith
ef7d38d35a For PR21145: recognise a builtin call to a known deallocation function even if
it's defined in the current module. Clang generates this situation for the
C++14 sized deallocation functions, because it generates a weak definition in
case one isn't provided by the C++ runtime library.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226069 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-15 01:00:33 +00:00
Duncan P. N. Exon Smith
37ac8d3622 IR: Move MDLocation into place
This commit moves `MDLocation`, finishing off PR21433.  There's an
accompanying clang commit for frontend testcases.  I'll attach the
testcase upgrade script I used to PR21433 to help out-of-tree
frontends/backends.

This changes the schema for `DebugLoc` and `DILocation` from:

    !{i32 3, i32 7, !7, !8}

to:

    !MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8)

Note that empty fields (line/column: 0 and inlinedAt: null) don't get
printed by the assembly writer.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226048 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 22:27:36 +00:00
David Majnemer
5e8cd99f55 InstCombine: Don't take A-B<0 into A<B if A-B has other uses
This fixes PR22226.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226023 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 19:26:56 +00:00
Ahmed Bougacha
61d6dc41fa [SimplifyLibCalls] Don't try to simplify indirect calls.
It turns out, all callsites of the simplifier are guarded by a check for
CallInst::getCalledFunction (i.e., to make sure the callee is direct).

This check wasn't done when trying to further optimize a simplified fortified
libcall, introduced by a refactoring in r225640.

Fix that, add a testcase, and document the requirement.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225895 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 00:55:05 +00:00
Matt Arsenault
3b1f741856 Fix fcmp + fabs instcombines when using the intrinsic
This was only handling the libcall. This is another example
of why only the intrinsic should ever be used when it exists.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225465 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-08 20:09:34 +00:00
Matt Arsenault
374b57cec9 Fix using wrong intrinsic in test
This is a leftover from renaming the intrinsic.
It's surprising the unknown llvm. intrinsic wasn't rejected.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225304 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-06 23:00:33 +00:00
Matt Arsenault
d883ca0ca7 Convert fcmp with 0.0 from casted integers to icmp
This is already handled in general when it is known the
conversion can't lose bits with smaller integer types
casted into wider floating point types.

This pattern happens somewhat often in GPU programs that cast
workitem intrinsics to float, which are often compared with 0.

Specifically handle the special case of compares with zero which
should also be known to not lose information. I had a more general
version of this which allows equality compares if the casted float is
exactly representable in the integer, but I'm not 100% confident that
is always correct.

Also fold cases that aren't integers to true / false.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225265 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-06 15:50:59 +00:00
David Majnemer
51e4a66417 InstCombine: Bitcast call arguments from/to pointer/integer type
Try harder to get rid of bitcast'd calls by ptrtoint/inttoptr'ing
arguments and return values when DataLayout says it is safe to do so.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225254 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-06 08:41:31 +00:00
David Majnemer
07d7dbae9e InstCombine: match can find ConstantExprs, don't assume we have a Value
We assumed the output of a match was a Value, this would cause us to
assert because we would fail a cast<>.  Instead, use a helper in the
Operator family to hide the distinction between Value and Constant.

This fixes PR22087.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225127 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-04 07:36:02 +00:00
David Majnemer
5e9c6212a8 InstCombine: Detect when llvm.umul.with.overflow always overflows
We know overflow always occurs if both ~LHSKnownZero * ~RHSKnownZero
and LHSKnownOne * RHSKnownOne overflow.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225077 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-02 07:29:47 +00:00
Sanjay Patel
28650b8ec2 InstCombine: fsub nsz 0, X ==> fsub nsz -0.0, X
Some day the backend may handle instruction-level fast math flags and make
this transform unnecessary, but it's still better practice to use the canonical
representation of fneg when possible (use a -0.0).

This is a partial fix for PR20870 ( http://llvm.org/bugs/show_bug.cgi?id=20870 ).
See also http://reviews.llvm.org/D6723.

Differential Revision: http://reviews.llvm.org/D6731



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225050 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-31 22:14:05 +00:00
David Majnemer
0f77ccd6bb InstCombine: try to transform A-B < 0 into A < B
We are allowed to move the 'B' to the right hand side if we an prove
there is no signed overflow and if the comparison itself is signed.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225034 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-31 04:21:41 +00:00
Philip Reames
91a083c57f Carry facts about nullness and undef across GC relocation
This change implements four basic optimizations:

    If a relocated value isn't used, it doesn't need to be relocated.
    If the value being relocated is null, relocation doesn't change that. (Technically, this might be collector specific. I don't know of one which it doesn't work for though.)
    If the value being relocated is undef, the relocation is meaningless.
    If the value being relocated was known nonnull, the relocated pointer also isn't null. (Since it points to the same source language object.)

I outlined other planned work in comments.

Differential Revision: http://reviews.llvm.org/D6600



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224968 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-29 23:27:30 +00:00
Philip Reames
456b7b602c Loading from null is valid outside of addrspace 0
This patches fixes a miscompile where we were assuming that loading from null is undefined and thus we could assume it doesn't happen.  This transform is perfectly legal in address space 0, but is not neccessarily legal in other address spaces.

We really should introduce a hook to control this property on a per target per address space basis.  We may be loosing valuable optimizations in some address spaces by being too conservative.

Original patch by Thomas P Raoux (submitted to llvm-commits), tests and formatting fixes by me.




git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224961 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-29 22:46:21 +00:00
David Majnemer
7627d9c229 InstCombine: Infer nuw for multiplies
A multiply cannot unsigned wrap if there are bitwidth, or more, leading
zero bits between the two operands.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224849 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-26 09:50:35 +00:00
David Majnemer
998ae69abe InstCombe: Infer nsw for multiplies
We already utilize this logic for reducing overflow intrinsics, it makes
sense to reuse it for normal multiplies as well.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224847 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-26 09:10:14 +00:00
Michael Kuperstein
a098c770e1 [ValueTracking] Move GlobalAlias handling to be after the max depth check in computeKnownBits()
GlobalAlias handling used to be after GlobalValue handling, which meant it was, in practice, dead code. r220165 moved GlobalAlias handling to be before GlobalValue handling, but also moved it to be before the max depth check, causing an assert due to a recursion depth limit violation. 

This moves GlobalAlias handling forward to where it's safe, and changes the GlobalValue handling to only look at GlobalObjects.

Differential Revision: http://reviews.llvm.org/D6758

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224765 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-23 11:33:41 +00:00
David Majnemer
6df827240e This should have been part of r224676.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224677 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-20 04:48:34 +00:00
David Majnemer
854a37649a InstCombine: Squash an icmp+select into bitwise arithmetic
(X & INT_MIN) == 0 ? X ^ INT_MIN : X  into  X | INT_MIN
(X & INT_MIN) != 0 ? X ^ INT_MIN : X  into  X & INT_MAX

This fixes PR21993.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224676 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-20 04:45:35 +00:00
Bruno Cardoso Lopes
06833ca7c1 Reapply: [InstCombine] Fix visitSwitchInst to use right operand types for sub cstexpr
The visitSwitchInst generates SUB constant expressions to recompute the
switch condition. When truncating the condition to a smaller type, SUB
expressions should use the previous type (before trunc) for both
operands. Also, fix code to also return the modified switch when only
the truncation is performed.

This fixes an assertion crash.

Differential Revision: http://reviews.llvm.org/D6644

rdar://problem/19191835

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224588 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-19 17:12:35 +00:00
Sanjay Patel
7c5fa50875 use -0.0 when creating an fneg instruction
Backends recognize (-0.0 - X) as the canonical form for fneg
and produce better code. Eg, ppc64 with 0.0:

   lis r2, ha16(LCPI0_0)
   lfs f0, lo16(LCPI0_0)(r2)
   fsubs f1, f0, f1
   blr

vs. -0.0:

   fneg f1, f1
   blr

Differential Revision: http://reviews.llvm.org/D6723



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224583 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-19 16:44:08 +00:00
Bruno Cardoso Lopes
01b07d541b Revert "[InstCombine] Fix visitSwitchInst to use right operand types for sub cstexpr"
Reverts commit r224574 to appease buildbots:

The visitSwitchInst generates SUB constant expressions to recompute the
switch condition. When truncating the condition to a smaller type, SUB
expressions should use the previous type (before trunc) for both
operands. This fixes an assertion crash.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224576 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-19 14:36:24 +00:00
Bruno Cardoso Lopes
cba407d019 [InstCombine] Fix visitSwitchInst to use right operand types for sub cstexpr
The visitSwitchInst generates SUB constant expressions to recompute the
switch condition. When truncating the condition to a smaller type, SUB
expressions should use the previous type (before trunc) for both
operands. This fixes an assertion crash.

Differential Revision: http://reviews.llvm.org/D6644

rdar://problem/19191835

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224574 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-19 14:23:15 +00:00
Erik Eckstein
96bd465d6c Strength reduce intrinsics with overflow into regular arithmetic operations if possible.
Some intrinsics, like s/uadd.with.overflow and umul.with.overflow, are already strength reduced.
This change adds other arithmetic intrinsics: s/usub.with.overflow, smul.with.overflow.
It completes the work on PR20194.




git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224417 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-17 07:29:19 +00:00
Duncan P. N. Exon Smith
1ef70ff39b IR: Make metadata typeless in assembly
Now that `Metadata` is typeless, reflect that in the assembly.  These
are the matching assembly changes for the metadata/value split in
r223802.

  - Only use the `metadata` type when referencing metadata from a call
    intrinsic -- i.e., only when it's used as a `Value`.

  - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
    when referencing it from call intrinsics.

So, assembly like this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata !{i32 %v}, metadata !0)
      call void @llvm.foo(metadata !{i32 7}, metadata !0)
      call void @llvm.foo(metadata !1, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{metadata !3}, metadata !0)
      ret void, !bar !2
    }
    !0 = metadata !{metadata !2}
    !1 = metadata !{i32* @global}
    !2 = metadata !{metadata !3}
    !3 = metadata !{}

turns into this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata i32 %v, metadata !0)
      call void @llvm.foo(metadata i32 7, metadata !0)
      call void @llvm.foo(metadata i32* @global, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{!3}, metadata !0)
      ret void, !bar !2
    }
    !0 = !{!2}
    !1 = !{i32* @global}
    !2 = !{!3}
    !3 = !{}

I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines).  I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.

This is part of PR21532.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224257 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-15 19:07:53 +00:00
David Majnemer
3b7e6d27d2 ValueTracking: Don't recurse too deeply in computeKnownBitsFromAssume
Respect the MaxDepth recursion limit, doing otherwise will trigger an
assert in computeKnownBits.

This fixes PR21891.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224168 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-12 23:59:29 +00:00
Steven Wu
a511846bdf Fix another infinite loop in InstCombine
Summary:
InstCombine infinite-loops for the testcase added
It is because InstCombine is generating instructions that can be
optimized by itself. Fix by not optimizing frem if the optimized
type is the same as original type.
rdar://problem/19150820

Reviewers: majnemer

Differential Revision: http://reviews.llvm.org/D6634

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224097 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-12 04:34:07 +00:00
Andrea Di Biagio
f27500040b [InstCombine][X86] Improved folding of calls to Intrinsic::x86_sse4a_insertqi.
This patch teaches the instruction combiner how to fold a call to 'insertqi' if
the 'length field' (3rd operand) is set to zero, and if the sum between
field 'length' and 'bit index' (4th operand) is bigger than 64.

From the AMD64 Architecture Programmer's Manual:
1. If the sum of the bit index + length field is greater than 64, then the
   results are undefined;
2. A value of zero in the field length is defined as a length of 64.

This patch improves the existing combining logic for intrinsic 'insertqi'
adding extra checks to address both point 1. and point 2.

Differential Revision: http://reviews.llvm.org/D6583


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224054 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-11 20:44:59 +00:00
David Majnemer
72c6bdbf70 ConstantFold, InstSimplify: undef >>a x can be either -1 or 0, choose 0
Zero is usually a nicer constant to have than -1.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223969 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-10 21:58:15 +00:00
Chandler Carruth
3508e27903 Revert r223764 which taught instcombine about integer-based elment extraction
patterns.

This is causing Clang to miscompile itself for 32-bit x86 somehow, and likely
also on ARM and PPC. I really don't know how, but reverting now that I've
confirmed this is actually the culprit. I have a reproduction as well and so
should be able to restore this shortly.

This reverts commit r223764.

Original commit log follows:
Teach instcombine to canonicalize "element extraction" from a load of an
integer and "element insertion" into a store of an integer into actual
element extraction, element insertion, and vector loads and stores.

Previously various parts of LLVM (including instcombine itself) would
introduce integer loads and stores into the code as a way of opaquely
loading and storing "bits". In some cases (such as a memcpy of
std::complex<float> object) we will eventually end up using those bits
in non-integer types. In order for SROA to effectively promote the
allocas involved, it splits these "store a bag of bits" integer loads
and stores up into the constituent parts. However, for non-alloca loads
and tsores which remain, it uses integer math to recombine the values
into a large integer to load or store.

All of this would be "fine", except that it forces LLVM to go through
integer math to combine and split up values. While this makes perfect
sense for integers (and in fact is critical for bitfields to end up
lowering efficiently) it is *terrible* for non-integer types, especially
floating point types. We have a much more canonical way of representing
the act of concatenating the bits of two SSA values in LLVM: a vector
and insertelement. This patch teaching InstCombine to use this
representation.

With this patch applied, LLVM will no longer introduce integer math into
the critical path of every loop over std::complex<float> operations such
as those that make up the hot path of ... oh, most HPC code, Eigen, and
any other heavy linear algebra library.

For the record, I looked *extensively* at fixing this in other parts of
the compiler, but it just doesn't work:
- We really do want to canonicalize memcpy and other bit-motion to
  integer loads and stores. SSA values are tremendously more powerful
  than "copy" intrinsics. Not doing this regresses massive amounts of
  LLVM's scalar optimizer.
- We really do need to split up integer loads and stores of this form in
  SROA or every memcpy of a trivially copyable struct will prevent SSA
  formation of the members of that struct. It essentially turns off
  SROA.
- The closest alternative is to actually split the loads and stores when
  partitioning with SROA, but this has all of the downsides historically
  discussed of splitting up loads and stores -- the wide-store
  information is fundamentally lost. We would also see performance
  regressions for bitfield-heavy code and other places where the
  integers aren't really intended to be split without seemingly
  arbitrary logic to treat integers totally differently.
- We *can* effectively fix this in instcombine, so it isn't that hard of
  a choice to make IMO.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223813 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-09 19:21:16 +00:00
Sonam Kumari
05a824843d Removal Of Duplicate Test Cases and Addition Of Missing Check Statements
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223768 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-09 10:46:38 +00:00
Ankur Garg
df35082f20 [test/Transforms/InstCombine/shift.ll] Removed duplicate test cases. NFC.
Removed some duplicate test cases from the file /test/Transforms/InstCombine/shift.ll.

test54 and test57 were duplicates of each other.
test55 and test58 were duplicates of each other.

(Removed test57 and test58)



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223767 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-09 10:35:19 +00:00
Chandler Carruth
e78a87b633 Teach instcombine to canonicalize "element extraction" from a load of an
integer and "element insertion" into a store of an integer into actual
element extraction, element insertion, and vector loads and stores.

Previously various parts of LLVM (including instcombine itself) would
introduce integer loads and stores into the code as a way of opaquely
loading and storing "bits". In some cases (such as a memcpy of
std::complex<float> object) we will eventually end up using those bits
in non-integer types. In order for SROA to effectively promote the
allocas involved, it splits these "store a bag of bits" integer loads
and stores up into the constituent parts. However, for non-alloca loads
and tsores which remain, it uses integer math to recombine the values
into a large integer to load or store.

All of this would be "fine", except that it forces LLVM to go through
integer math to combine and split up values. While this makes perfect
sense for integers (and in fact is critical for bitfields to end up
lowering efficiently) it is *terrible* for non-integer types, especially
floating point types. We have a much more canonical way of representing
the act of concatenating the bits of two SSA values in LLVM: a vector
and insertelement. This patch teaching InstCombine to use this
representation.

With this patch applied, LLVM will no longer introduce integer math into
the critical path of every loop over std::complex<float> operations such
as those that make up the hot path of ... oh, most HPC code, Eigen, and
any other heavy linear algebra library.

For the record, I looked *extensively* at fixing this in other parts of
the compiler, but it just doesn't work:
- We really do want to canonicalize memcpy and other bit-motion to
  integer loads and stores. SSA values are tremendously more powerful
  than "copy" intrinsics. Not doing this regresses massive amounts of
  LLVM's scalar optimizer.
- We really do need to split up integer loads and stores of this form in
  SROA or every memcpy of a trivially copyable struct will prevent SSA
  formation of the members of that struct. It essentially turns off
  SROA.
- The closest alternative is to actually split the loads and stores when
  partitioning with SROA, but this has all of the downsides historically
  discussed of splitting up loads and stores -- the wide-store
  information is fundamentally lost. We would also see performance
  regressions for bitfield-heavy code and other places where the
  integers aren't really intended to be split without seemingly
  arbitrary logic to treat integers totally differently.
- We *can* effectively fix this in instcombine, so it isn't that hard of
  a choice to make IMO.

Differential Revision: http://reviews.llvm.org/D6548

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223764 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-09 08:55:32 +00:00
Sonam Kumari
a585ec7f7f Removal Of Duplicate Test Case from shift.ll file
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223648 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-08 09:40:43 +00:00
Philip Reames
ef7c2ff0f3 Add a test case for argument type coercion in an invoke of a vararg function
This would have caught the bug I fixed in 223370.  



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223378 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-04 19:13:45 +00:00
Simon Pilgrim
94590ca4cf [InstCombine] Minor optimization for bswap with binary ops
Added instcombine optimizations for BSWAP with AND/OR/XOR ops:

OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )

Since its just a one liner, I've also added BSWAP to the DAGCombiner equivalent as well:

fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y))

Refactored bswap-fold tests to use FileCheck instead of just checking that the bswaps had gone.

Differential Revision: http://reviews.llvm.org/D6407



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223349 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-04 09:44:01 +00:00
Matthias Braun
b0ec6c21b7 [SimplifyLibCalls] Improve double->float shrinking to consider constants
This allows cases like float x; fmin(1.0, x); to be optimized to fminf(1.0f, x);

rdar://19049359

Differential Revision: http://reviews.llvm.org/D6496

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223270 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-03 21:46:33 +00:00
Matthias Braun
9d362ec2a4 [SimplifyLibCalls] Enable double to float shrinking for copysign
rdar://19049359

Differential Revision: http://reviews.llvm.org/D6495

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223269 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-03 21:46:29 +00:00
Erik Eckstein
10e28ca6b1 InstCombine: simplify signed range checks
Try to convert two compares of a signed range check into a single unsigned compare.
Examples:
(icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
(icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n




git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223224 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-03 10:39:15 +00:00
Sonam Kumari
4b0964871d [signext.ll] Removal Of Duplicate Test Cases
Removed the duplicate test case existing in signext.ll file.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223109 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-02 05:29:47 +00:00
Sonam Kumari
5e6e75a48e Removed extra whitespace. (Testing commit access). NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222994 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-01 09:27:46 +00:00
David Majnemer
a1129621dd InstCombine: FoldOrOfICmps harder
We may be in a situation where the icmps might not be near each other in
a tree of or instructions.  Try to dig out related compare instructions
and see if they combine.

N.B.  This won't fire on deep trees of compares because rewritting the
tree might end up creating a net increase of IR.  We may have to resort
to something more sophisticated if this is a real problem.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222928 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-28 19:58:29 +00:00
Suyog Sarda
578b3ccd8f Use FileCheck instead of grep. Change by Ankur Garg.
Differential Revision: http://reviews.llvm.org/D6430


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222879 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-27 11:22:49 +00:00
Suyog Sarda
8fc5d5c0da Use FileCheck instead of grep. Change by Sonam.
Differential Revision: http://reviews.llvm.org/D6432



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-27 10:57:24 +00:00
David Majnemer
dcf39d2586 InstCombine: Restore optimizations lost in r210006
This restores our ability to optimize:
(X & C) == 0 ? X ^ C : X  into  X | C
(X & C) != 0 ? X ^ C : X  into  X & ~C

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222871 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-27 07:25:21 +00:00
David Majnemer
f45536e75e InstSimplify: Restore optimizations lost in r210006
This restores our ability to optimize:
(X & C) ? X & ~C : X  into  X & ~C
(X & C) ? X : X & ~C  into  X
(X & C) ? X | C : X  into  X
(X & C) ? X : X | C  into  X | C

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222868 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-27 06:32:46 +00:00
David Majnemer
9e6a1814c9 Revert "Added inst combine transforms for single bit tests from Chris's note"
This reverts commit r210006, it miscompiled libapr which is used in who
knows how many projects.

A test has been added to ensure that we don't regress again.

I'll work on a rewrite of what the optimization was trying to do later.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222856 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-26 23:00:38 +00:00
Chandler Carruth
333d5c9f51 [InstCombine] Change LLVM To canonicalize toward the value type being
stored rather than the pointer type.

This change is analogous to r220138 which changed the canonicalization
for loads. The rationale is the same: memory does not have a type,
operations (and thus the values they produce) have a type. We should
match that type as closely as possible rather than reading some form of
semantics into the pointer type.

With this change, loads and stores should no longer be made with
nonsensical types for the values that tehy load and store. This is
particularly important when trying to match specific loaded and stored
types in the process of doing other instcombines, which is what led me
down this twisty maze of miscanonicalization.

I've put quite some effort into looking through IR to find places where
LLVM's optimizer was being unreasonably conservative in the face of
mismatched load and store types, however it is possible (let's say,
likely!) I have missed some. If you see regressions here, or from
r220138, the likely cause is some part of LLVM failing to cope with load
and store types differing. Test cases appreciated, it is important that
we root all of these out of LLVM.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222748 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-25 10:09:51 +00:00
Suyog Sarda
faab0cf1ad Change the test case file to use FileCheck instead of grep. NFC.
Change by Ankur Garg.

Differential Revision: http://reviews.llvm.org/D6382


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222740 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-25 08:44:56 +00:00
Chandler Carruth
a87c35420b Revert r220349 to re-instate r220277 with a fix for PR21330 -- quite
clearly only exactly equal width ptrtoint and inttoptr casts are no-op
casts, it says so right there in the langref. Make the code agree.

Original log from r220277:
Teach the load analysis to allow finding available values which require
inttoptr or ptrtoint cast provided there is datalayout available.
Eventually, the datalayout can just be required but in practice it will
always be there today.

To go with the ability to expose available values requiring a ptrtoint
or inttoptr cast, helpers are added to perform one of these three casts.

These smarts are necessary to finish canonicalizing loads and stores to
the operational type requirements without regressing fundamental
combines.

I've added some test cases. These should actually improve as the load
combining and store combining improves, but they may fundamentally be
highlighting some missing combines for select in addition to exercising
the specific added logic to load analysis.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222739 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-25 08:20:27 +00:00
Matt Arsenault
2543acd169 Bug 21610: Canonicalize min/max fcmp selects to use ordered comparisons
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222705 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-24 23:15:18 +00:00
Matt Arsenault
3ff3cb7fe3 Convert test to FileCheck and use CHECK-LABEL
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222704 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-24 23:03:17 +00:00
David Majnemer
a17a9dc8df InstCombine: Don't create an unused instruction
We would create an instruction but not inserting it.
Not inserting the unused instruction would lead us to verification
failure.

This fixes PR21653.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222659 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-24 16:41:13 +00:00
David Majnemer
4a9d304d9d InstCombine: Don't assume DataLayout is always available
We tried to get the result of DataLayout::getLargestLegalIntTypeSize but
we didn't have a DataLayout.  This resulted in opt crashing.

This fixes PR21651.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222645 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-24 07:26:20 +00:00
David Majnemer
369d8fa34f InstCombine: Propagate exact for (sdiv X, Pow2) -> (udiv X, Pow2)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222625 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-22 20:00:41 +00:00
David Majnemer
89bcfdb956 InstCombine: Propagate exact for (sdiv X, Y) -> (udiv X, Y)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222624 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-22 20:00:38 +00:00
David Majnemer
91349eecb0 InstCombine: Propagate exact for (sdiv -X, C) -> (sdiv X, -C)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222623 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-22 20:00:34 +00:00
David Majnemer
218fe23f41 InstCombine: Propagate exact in (udiv (lshr X,C1),C2) -> (udiv x,C1<<C2)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222620 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-22 18:16:54 +00:00
David Majnemer
8ff39c5c44 InstCombine: Propagate NSW/NUW for X*(1<<Y) -> X<<Y
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222613 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-22 08:57:02 +00:00
David Majnemer
082eff658e InstCombine: Propagate NSW for -X * -Y -> X * Y
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222612 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-22 07:25:19 +00:00
David Majnemer
fc1c5babaf InstCombine: Preserve nsw when folding X*(2^C) -> X << C
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222606 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-22 04:52:55 +00:00
David Majnemer
156d6ec86b InstCombine: Preserve nsw/nuw for ((X << C2)*C1) -> (X * (C1 << C2))
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222605 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-22 04:52:52 +00:00
David Majnemer
0f8991742c InstCombine: Preserve nsw for (mul %V, -1) -> (sub 0, %V)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222604 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-22 04:52:38 +00:00
Gerolf Hoflehner
5182ad54b2 [InstCombine] Re-commit of r218721 (Optimize icmp-select-icmp sequence)
Fixes the self-host fail. Note that this commit activates dominator
analysis in the combiner by default (like the original commit did).



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222590 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-21 23:36:44 +00:00
David Majnemer
643bef9333 InstCombine: Fix another infinite loop caused by visitFPTrunc
We would attempt to replace an frem's operand with the same operand.
This would cause InstCombine to think real work was done, causing
InstCombine to enter an infinite loop.

This fixes the second part of PR21576.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222265 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-18 22:06:45 +00:00
David Majnemer
063e54286c Revert "Revert r222040 because of bot failure."
This reverts commit r222203, reverting r222040 didn't end up turning the
bot green.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222261 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-18 21:30:02 +00:00
David Majnemer
0ede3a2ae5 InstCombine: Fold away tautological masked compares
It is impossible for (x & INT_MAX) == 0 && x == INT_MAX to ever be true.

While this sort of reasoning should normally live in InstSimplify,
the machinery that derives this result is not trivial to split out.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222230 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-18 09:31:41 +00:00
Manman Ren
8ce35351f8 Revert r222040 because of bot failure.
http://lab.llvm.org:8080/green/job/clang-Rlto_master/298/
Hopefully, bot will be green.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222203 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-18 00:33:22 +00:00
David Majnemer
9019a6092d InstCombine: Fix infinite loop caused by visitFPTrunc
We would attempt to replace a fptrunc of an frem with an identical
fptrunc.  This would cause the new fptrunc to be added to the worklist.
Of course, this results in an infinite loop because we will keep
visiting the newly created fptruncs.

This fixes PR21576.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222040 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-14 21:21:15 +00:00
Sanjay Patel
bc8114f733 CGSCC should not treat intrinsic calls like function calls (PR21403)
Make the handling of calls to intrinsics in CGSCC consistent: 
they are not treated like regular function calls because they
are never lowered to function calls.

Without this patch, we can get dangling pointer asserts from
the subsequent loop that processes callsites because it already
ignores intrinsics.

See http://llvm.org/bugs/show_bug.cgi?id=21403 for more details / discussion.

Differential Revision: http://reviews.llvm.org/D6124



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221802 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-12 18:25:47 +00:00
Bill Schmidt
fc22bfd921 [PowerPC] Add vec_vsx_ld and vec_vsx_st intrinsics
This patch enables the vec_vsx_ld and vec_vsx_st intrinsics for
PowerPC, which provide programmer access to the lxvd2x, lxvw4x,
stxvd2x, and stxvw4x instructions.

New LLVM intrinsics are provided to represent these four instructions
in IntrinsicsPowerPC.td.  These are patterned after the similar
intrinsics for lvx and stvx (Altivec).  In PPCInstrVSX.td, these
intrinsics are tied to the code gen patterns, with additional patterns
to allow plain vanilla loads and stores to still generate these
instructions.

At -O1 and higher the intrinsics are immediately converted to loads
and stores in InstCombineCalls.cpp.  This will open up more
optimization opportunities while still allowing the correct
instructions to be generated.  (Similar code exists for aligned
Altivec loads and stores.)

The new intrinsics are added to the code that checks for consecutive
loads and stores in PPCISelLowering.cpp, as well as to
PPCTargetLowering::getTgtMemIntrinsic().

There's a new test to verify the correct instructions are generated.
The loads and stores tend to be reordered, so the test just counts
their number.  It runs at -O2, as it's not very effective to test this
at -O0, when many unnecessary loads and stores are generated.

I ended up having to modify vsx-fma-m.ll.  It turns out this test case
is slightly unreliable, but I don't know a good way to prevent
problems with it.  The xvmaddmdp instructions read and write the same
register, which is one of the multiplicands.  Commutativity allows
either to be chosen.  If the FMAs are reordered differently than
expected by the test, the register assignment can be different as a
result.  Hopefully this doesn't change often.

There is a companion patch for Clang.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221767 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-12 04:19:40 +00:00
Philip Reames
a03cda02ab Canonicalize an assume(load != null) into !nonnull metadata
We currently have two ways of informing the optimizer that the result of a load is never null: metadata and assume. This change converts the second in to the former. This avoids a need to implement optimizations using both forms.

We should probably extend this basic idea to metadata of other forms; in particular, range metadata. We view is that assumes should be considered a "last resort" for when there isn't a more canonical way to represent something.

Reviewed by: Hal
Differential Revision: http://reviews.llvm.org/D5951



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221737 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-11 23:33:19 +00:00
David Majnemer
98066413ca InstCombine: Rely on cmpxchg's return code when it's strong
Comparing the result of a cmpxchg instruction can be replaced with an
extractvalue of the cmpxchg success indicator.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221498 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-06 23:23:30 +00:00
David Majnemer
229e959cd6 Minimize test case further
No functional change intended.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221237 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-04 05:17:58 +00:00
David Majnemer
c671375e8e InstCombine: Remove infinite loop caused by FoldOpIntoPhi
FoldOpIntoPhi could create an infinite loop if the PHI could potentially
reach a BB it was considering inserting instructions into.  The
instructions it would insert would eventually lead to other combines
firing which would, again, lead to FoldOpIntoPhi firing.

The solution is to handicap FoldOpIntoPhi so that it doesn't attempt to
insert instructions that the PHI might reach.

This fixes PR21377.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221187 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-03 21:55:12 +00:00
David Majnemer
9808f11b09 InstCombine: Combine (X | Y) - X to (~X & Y)
This implements the transformation from (X | Y) - X to (~X & Y).

Differential Revision: http://reviews.llvm.org/D5791

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221129 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-03 05:53:55 +00:00
David Majnemer
ed297abb0a InstCombine: Don't assume that m_ZExt matches an Instruction
m_ZExt might bind against a ConstantExpr instead of an Instruction.
Assuming this, using cast<Instruction>, results in InstCombine crashing.

Instead, introduce ZExtOperator to bridge both Instruction and
ConstantExpr ZExts.

This fixes PR21445.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221069 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-01 23:46:05 +00:00
David Majnemer
f74443e53a InstCombine: Combine (X+cst) < 0 --> X < -cst
This can happen pretty often in code that looks like:
int foo = bar - 1;
if (foo < 0)
  do stuff

In this case, bar < 1 is an equivalent condition.

This transform requires that the add instruction be annotated with nsw.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221045 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-01 09:09:51 +00:00
Philip Reames
aad4ea476e Add handling for range metadata in ValueTracking isKnownNonZero
If we load from a location with range metadata, we can use information about the ranges of the loaded value for optimization purposes.  This helps to remove redundant checks and canonicalize checks for other optimization passes.  This particular patch checks whether a value is known to be non-zero from the range metadata.

Currently, these tests are against InstCombine.  In theory, all of these should be InstSimplify since we're not inserting any new instructions.  Moving the code may follow in a separate change.

Reviewed by: Hal
Differential Revision: http://reviews.llvm.org/D5947



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220925 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-30 20:25:19 +00:00
David Majnemer
fe58be3733 InstCombine: Fix a combine assuming that icmp operands were integers
An icmp may have pointer arguments, it isn't limited to integers or
vectors of integers.

This fixes PR21388.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220664 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-27 05:47:49 +00:00
Sanjay Patel
d2153694e0 Handle sqrt() shrinking in SimplifyLibCalls like any other call
This patch removes a chunk of special case logic for folding 
(float)sqrt((double)x) -> sqrtf(x)
in InstCombineCasts and handles it in the mainstream path of SimplifyLibCalls.

No functional change intended, but I loosened the restriction on the existing
sqrt testcases to allow for this optimization even without unsafe-fp-math because
that's the existing behavior.

I also added a missing test case for not shrinking the llvm.sqrt.f64 intrinsic
in case the result is used as a double.

Differential Revision: http://reviews.llvm.org/D5919



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220514 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-23 21:52:45 +00:00
Sanjay Patel
dc18ebc4b1 Shrinkify libcalls: use float versions of double libm functions with fast-math (bug 17850)
When a call to a double-precision libm function has fast-math semantics 
(via function attribute for now because there is no IR-level FMF on calls), 
we can avoid fpext/fptrunc operations and use the float version of the call
if the input and output are both float.

We already do this optimization using a command-line option; this patch just
adds the ability for fast-math to use the existing functionality.

I moved the cl::opt from InstructionCombining into SimplifyLibCalls because
it's only ever used internally to that class.

Modified the existing test cases to use the unsafe-fp-math attribute rather
than repeating all tests.

This patch should solve: http://llvm.org/bugs/show_bug.cgi?id=17850

Differential Revision: http://reviews.llvm.org/D5893



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220390 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-22 15:29:23 +00:00
Hans Wennborg
ec4e924836 Revert "Teach the load analysis to allow finding available values which require" (r220277)
This seems to have caused PR21330.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220349 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-21 23:49:52 +00:00
Matt Arsenault
252134602f Add minnum / maxnum intrinsics
These are named following the IEEE-754 names for these
functions, rather than the libm fmin / fmax to avoid
possible ambiguities. Some languages may implement something
resembling fmin / fmax which return NaN if either operand is
to propagate errors. These implement the IEEE-754 semantics
of returning the other operand if either is a NaN representing
missing data.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220341 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-21 23:00:20 +00:00
David Majnemer
dea8105323 InstCombine: Simplify FoldICmpCstShrCst
This function was complicated by the fact that it tried to perform
canonicalizations that were already preformed by InstSimplify.  Remove
this extra code and move the tests over to InstSimplify.  Add asserts to
make sure our preconditions hold before we make any assumptions.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220314 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-21 19:51:55 +00:00
Chandler Carruth
9156c5e3ba Teach the load analysis to allow finding available values which require
inttoptr or ptrtoint cast provided there is datalayout available.
Eventually, the datalayout can just be required but in practice it will
always be there today.

To go with the ability to expose available values requiring a ptrtoint
or inttoptr cast, helpers are added to perform one of these three casts.

These smarts are necessary to finish canonicalizing loads and stores to
the operational type requirements without regressing fundamental
combines.

I've added some test cases. These should actually improve as the load
combining and store combining improves, but they may fundamentally be
highlighting some missing combines for select in addition to exercising
the specific added logic to load analysis.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220277 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-21 09:00:40 +00:00
Chandler Carruth
3ac929c473 Fix a miscompile introduced in r220178.
The original code had an implicit assumption that if the test for
allocas or globals was reached, the two pointers were not equal. With my
changes to make the pointer analysis more powerful here, I also had to
guard against circumstances where the results weren't useful. That in
turn violated the assumption and gave rise to a circumstance in which we
could have a store with both the queried pointer and stored pointer
rooted at *the same* alloca. Clearly, we cannot ignore such a store.
There are other things we might do in this code to better handle the
case of both pointers ending up at the same alloca or global, but it
seems best to at least make the test explicit in what it intends to
check.

I've added tests for both the alloca and global case here.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220190 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-20 10:03:01 +00:00
Chandler Carruth
35c4e071be Teach the load analysis driving core instcombine logic and other bits of
logic to look through pointer casts, making them trivially stronger in
the face of loads and stores with intervening pointer casts.

I've included a few test cases that demonstrate the kind of folding
instcombine can do without pointer casts and then variations which
obfuscate the logic through bitcasts. Without this patch, the variations
all fail to optimize fully.

This is more important now than it has been in the past as I've started
moving the load canonicialization to more closely follow the value type
requirements rather than the pointer type requirements and thus this
needs to be prepared for more pointer casts. When I made the same change
to stores several test cases regressed without logic along these lines
so I wanted to systematically improve matters first.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220178 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-20 00:24:14 +00:00
Chandler Carruth
fc1c1ec435 Add a datalayout string to this test so that it exercises the full gamut
of InstCombine rather than just the bits enabled when datalayout is
optional.

The primary fixes here are because now things are little endian.

In good news, silliness like this seems like it will be going away as
we've got pretty stong consensus on dropping optional datalayout
entirely.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220176 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-20 00:11:31 +00:00
Chandler Carruth
63276ccdbd Do a better and more complete job of preserving metadata when combining
loads.

This handles many more cases than just the AA metadata, some of them
suggested by Hal in his review of the AA metadata handling patch. I've
tried to test this behavior where tractable to do so.

I'll point out that I have specifically *not* included a test for
debuginfo because it was going to require 2 or 3 times as much work to
craft some input which would survive the "helpful" stripping of debug
info metadata that doesn't match the desired schema. This is another
good example of why the current state of write-ability for our debug
info metadata is unacceptable. I spent over 30 minutes trying to conjure
some test case that would survive, even copying from other debug info
tests, but it always failed to survive with no explanation of why or how
I might fix it. =[

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220165 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-19 10:46:46 +00:00
Chandler Carruth
4d2a706176 Move previously dead code to handle computing the known bits of an alias
up to where it actually works as intended. The problem is that
a GlobalAlias isa GlobalValue and so the prior block handled all of the
cases.

This allows us to constant fold based on the actual constant expression
in the global alias. As an example, see the last function in the newly
added test case which explicitly aligns an unaligned pointer using
constant expression math. Without this change, we fail to see that and
fold an alignment test to zero.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220164 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-19 09:06:56 +00:00
David Majnemer
0fd4e2e5a1 InstCombine: (sub (or A B) (xor A B)) --> (and A B)
The following implements the transformation:
(sub (or A B) (xor A B)) --> (and A B).

Patch by Ankur Garg!

Differential Revision: http://reviews.llvm.org/D5719

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220163 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-19 08:32:32 +00:00
David Majnemer
242aeb9d84 InstCombine: Optimize icmp eq/ne (shl Const2, A), Const1
The following implements the optimization for sequences of the form:
icmp eq/ne (shl Const2, A), Const1

Such sequences can be transformed to:
icmp eq/ne A, (TrailingZeros(Const1) - TrailingZeros(Const2))

This handles only the equality operators for now. Other operators need
to be handled.

Patch by Ankur Garg!

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220162 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-19 08:23:08 +00:00
Chandler Carruth
908d4514f6 Fix a long-standing miscompile in the load analysis that was uncovered
by my refactoring of this code.

The method isSafeToLoadUnconditionally assumes that the load will
proceed with the preferred type alignment. Given that, it has to ensure
that the alloca or global is at least that aligned. It has always done
this historically when a datalayout is present, but has never checked it
when the datalayout is absent. When I refactored the code in r220156,
I exposed this path when datalayout was present and that turned the
latent bug into a patent bug.

This fixes the issue by just removing the special case which allows
folding things without datalayout. This isn't worth the complexity of
trying to tease apart when it is or isn't safe without actually knowing
the preferred alignment.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220161 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-19 08:17:50 +00:00
Chandler Carruth
797e9b812e Preserve AA metadata when combining (cast (load (...))) -> (load (cast
(...))).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220141 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-18 11:00:12 +00:00
Chandler Carruth
9b2d091a9c [InstCombine] Do an about-face on how LLVM canonicalizes (cast (load
...)) and (load (cast ...)): canonicalize toward the former.

Historically, we've tried to load using the type of the *pointer*, and
tried to match that type as closely as possible removing as many pointer
casts as we could and trading them for bitcasts of the loaded value.
This is deeply and fundamentally wrong.

Repeat after me: memory does not have a type! This was a hard lesson for
me to learn working on SROA.

There is only one thing that should actually drive the type used for
a pointer, and that is the type which we need to use to load from that
pointer. Matching up pointer types to the loaded value types is very
useful because it minimizes the physical size of the IR required for
no-op casts. Similarly, the only thing that should drive the type used
for a loaded value is *how that value is used*! Again, this minimizes
casts. And in fact, the *only* thing motivating types in any part of
LLVM's IR are the types used by the operations in the IR. We should
match them as closely as possible.

I've ended up removing some tests here as they were testing bugs or
behavior that is no longer present. Mostly though, this is just cleanup
to let the tests continue to function as intended.

The only fallout I've found so far from this change was SROA and I have
fixed it to not be impeded by the different type of load. If you find
more places where this change causes optimizations not to fire, those
too are likely bugs where we are assuming that the type of pointers is
"significant" for optimization purposes.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220138 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-18 06:36:22 +00:00
Chandler Carruth
a45d0c8bd1 Remove a test that was ported from the old llvm-gcc frontend test suite.
This test is pretty awesome. It is claiming to test devirtualization.
However, the code in question is not in fact devirtualized by LLVM. If
you take the original C++ test case and run it through Clang at -O3 we
fail to devirtualize it completely. It also isn't a sufficiently focused
test case.

The *reason* we fail to devirtualize it isn't because of any missing
instcombine though. Instead, it is because we fail to emit an available
externally vtable and thus the vtable is just an external and completely
opaque. If I cause the vtable to be emitted, we successfully
devirtualize things.

Anyways, I'm just removing it because it is providing negative value at
this point: it isn't representative of the output of Clang really, LLVM
isn't doing the transform it claims to be testing, LLVM's failure to do
the transform isn't actually an LLVM bug at all and we shouldn't be
testing for it here, and finally the test is written in such a way that
it will trivially pass even when the point of the test is failing.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220137 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-18 06:36:18 +00:00
Rafael Espindola
2f8f1d34e3 Delete -std-compile-opts.
These days -std-compile-opts was just a silly alias for -O3.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219951 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-16 20:00:02 +00:00