This patch implements two things:
1. If we know one number is positive and another is negative, we return true as
signed addition of two opposite signed numbers will never overflow.
2. Implemented TODO : If one of the operands only has one non-zero bit, and if
the other operand has a known-zero bit in a more significant place than it
(not including the sign bit) the ripple may go up to and fill the zero, but
won't change the sign. e.x - (x & ~4) + 1
We make sure that we are ignoring 0 at MSB.
Patch by Suyog Sarda.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210186 91177308-0d34-0410-b5e6-96231b3b80d8
This patch changes GlobalAlias to point to an arbitrary ConstantExpr and it is
up to MC (or the system assembler) to decide if that expression is valid or not.
This reduces our ability to diagnose invalid uses and how early we can spot
them, but it also lets us do things like
@test5 = alias inttoptr(i32 sub (i32 ptrtoint (i32* @test2 to i32),
i32 ptrtoint (i32* @bar to i32)) to i32*)
An important implication of this patch is that the notion of aliased global
doesn't exist any more. The alias has to encode the information needed to
access it in its metadata (linkage, visibility, type, etc).
Another consequence to notice is that getSection has to return a "const char *".
It could return a NullTerminatedStringRef if there was such a thing, but when
that was proposed the decision was to just uses "const char*" for that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210062 91177308-0d34-0410-b5e6-96231b3b80d8
The code was actually correct. Sorry for the confusion. I have expanded the
comment saying why the analysis is valid to avoid me misunderstaning it
again in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210052 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r210029.
It was not correctly handling cases where LHS and RHS had multiple but different
sign bits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210048 91177308-0d34-0410-b5e6-96231b3b80d8
if ((x & C) == 0) x |= C becomes x |= C
if ((x & C) != 0) x ^= C becomes x &= ~C
if ((x & C) == 0) x ^= C becomes x |= C
if ((x & C) != 0) x &= ~C becomes x &= ~C
if ((x & C) == 0) x &= ~C becomes nothing
Differential Revision: http://reviews.llvm.org/D3777
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210006 91177308-0d34-0410-b5e6-96231b3b80d8
Handle "X + ~X" -> "-1" in the function Value *Reassociate::OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
This patch implements:
TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
Patch by Rahul Jain!
Differential Revision: http://reviews.llvm.org/D3835
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209973 91177308-0d34-0410-b5e6-96231b3b80d8
This helps more branches into selects. On R600,
vectors are cheap and anything that helps
remove branches is very good.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209914 91177308-0d34-0410-b5e6-96231b3b80d8
The C and C++ semantics for compare_exchange require it to return a bool
indicating success. This gets mapped to LLVM IR which follows each cmpxchg with
an icmp of the value loaded against the desired value.
When lowered to ldxr/stxr loops, this extra comparison is redundant: its
results are implicit in the control-flow of the function.
This commit makes two changes: it replaces that icmp with appropriate PHI
nodes, and then makes sure earlyCSE is called after expansion to actually make
use of the opportunities revealed.
I've also added -{arm,aarch64}-enable-atomic-tidy options, so that
existing fragile tests aren't perturbed too much by the change. Many
of them either rely on undef/unreachable too pervasively to be
restored to something well-defined (particularly while making sure
they test the same obscure assert from many years ago), or depend on a
particular CFG shape, which is disrupted by SimplifyCFG.
rdar://problem/16227836
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209883 91177308-0d34-0410-b5e6-96231b3b80d8
The loop vectorizer instantiates be-taken-count + 1 as the loop iteration count.
If this expression overflows the generated code was invalid.
In case of overflow the code now jumps to the scalar loop.
Fixes PR17288.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209854 91177308-0d34-0410-b5e6-96231b3b80d8
Currently LLVM will generally merge GEPs. This allows backends to use more
complex addressing modes. In some cases this is not happening because there
is PHI inbetween the two GEPs:
GEP1--\
|-->PHI1-->GEP3
GEP2--/
This patch checks to see if GEP1 and GEP2 are similiar enough that they can be
cloned (GEP12) in GEP3's BB, allowing GEP->GEP merging (GEP123):
GEP1--\ --\ --\
|-->PHI1-->GEP3 ==> |-->PHI2->GEP12->GEP3 == > |-->PHI2->GEP123
GEP2--/ --/ --/
This also breaks certain use chains that are preventing GEP->GEP merges that the
the existing instcombine would merge otherwise.
Tests included.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209843 91177308-0d34-0410-b5e6-96231b3b80d8
During loop-unroll, loop exits from the current loop may end up in in different
outer loop. This requires to re-form LCSSA recursively for one level down from
the outer most loop where loop exits are landed during unroll. This fixes PR18861.
Differential Revision: http://reviews.llvm.org/D2976
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209796 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r209762, bringing back r209746. It was not responsible for the libc++ build failure
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209776 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r209746.
It looks it is causing a crash while building libcxx. I am trying to get a
reduced testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209762 91177308-0d34-0410-b5e6-96231b3b80d8
Currently LLVM will generally merge GEPs. This allows backends to use more
complex addressing modes. In some cases this is not happening because there
is PHI inbetween the two GEPs:
GEP1--\
|-->PHI1-->GEP3
GEP2--/
This patch checks to see if GEP1 and GEP2 are similiar enough that they can be
cloned (GEP12) in GEP3's BB, allowing GEP->GEP merging (GEP123):
GEP1--\ --\ --\
|-->PHI1-->GEP3 ==> |-->PHI2->GEP12->GEP3 == > |-->PHI2->GEP123
GEP2--/ --/ --/
This also breaks certain use chains that are preventing GEP->GEP merges that the
the existing instcombine would merge otherwise.
Tests included.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209755 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements two things:
1. If we know one number is positive and another is negative, we return true as
signed addition of two opposite signed numbers will never overflow.
2. Implemented TODO : If one of the operands only has one non-zero bit, and if
the other operand has a known-zero bit in a more significant place than it
(not including the sign bit) the ripple may go up to and fill the zero, but
won't change the sign. e.x - (x & ~4) + 1
We make sure that we are ignoring 0 at MSB.
Patch by Suyog Sarda.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209746 91177308-0d34-0410-b5e6-96231b3b80d8
This is an enhancement to SeparateConstOffsetFromGEP. With this patch, we can
extract a constant offset from "s/zext and/or/xor A, B".
Added a new test @ext_or to verify this enhancement.
Refactoring the code, I also extracted some common logic to function
Distributable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209670 91177308-0d34-0410-b5e6-96231b3b80d8
Detected by Daniel Jasper, Ilia Filippov, and Andrea Di Biagio
Fixed the argument order to select (the mask semantics to blendv* are the
inverse of select) and fixed the tests
Added parenthesis to the assert condition
Ran clang-format
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209667 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Implemented an InstCombine transformation that takes a blendv* intrinsic
call and translates it into an IR select, if the mask is constant.
This will eventually get lowered into blends with immediates if possible,
or pblendvb (with an option to further optimize if we can transform the
pblendvb into a blend+immediate instruction, depending on the selector).
It will also enable optimizations by the IR passes, which give up on
sight of the intrinsic.
Both the transformation and the lowering of its result to asm got shiny
new tests.
The transformation is a bit convoluted because of blendvp[sd]'s
definition:
Its mask is a floating point value! This forces us to convert it and get
the highest bit. I suppose this happened because the mask has type
__m128 in Intel's intrinsic and v4sf (for blendps) in gcc's builtin.
I will send an email to llvm-dev to discuss if we want to change this or
not.
Reviewers: grosbach, delena, nadav
Differential Revision: http://reviews.llvm.org/D3859
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209643 91177308-0d34-0410-b5e6-96231b3b80d8
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.
"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.
This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209577 91177308-0d34-0410-b5e6-96231b3b80d8
I'm doing this in two phases for a better "git blame" record. This
commit removes the previous AArch64 backend and redirects all
functionality to ARM64. It also deduplicates test-lines and removes
orphaned AArch64 tests.
The next step will be "git mv ARM64 AArch64" and rewire most of the
tests.
Hopefully LLVM is still functional, though it would be even better if
no-one ever had to care because the rename happens straight
afterwards.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209576 91177308-0d34-0410-b5e6-96231b3b80d8
Fixed a TODO in r207783.
Add the extracted constant offset using GEP instead of ugly
ptrtoint+add+inttoptr. Using GEP simplifies future optimizations and makes IR
easier to understand.
Updated all affected tests, and added a new test in split-gep.ll to cover a
corner case where emitting uglygep is necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209537 91177308-0d34-0410-b5e6-96231b3b80d8
ScalarEvolution::isKnownPredicate() can wrongly reduce a comparison
when both the LHS and RHS are SCEVAddRecExprs. This checks that both
LHS and RHS are guarded in the case when both are SCEVAddRecExprs.
The test case is against indvars because I could not find a way to
directly test SCEV.
Patch by Sanjay Patel!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209487 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This adds two new diagnostics: -pass-remarks-missed and
-pass-remarks-analysis. They take the same values as -pass-remarks but
are intended to be triggered in different contexts.
-pass-remarks-missed is used by LLVMContext::emitOptimizationRemarkMissed,
which passes call when they tried to apply a transformation but
couldn't.
-pass-remarks-analysis is used by LLVMContext::emitOptimizationRemarkAnalysis,
which passes call when they want to inform the user about analysis
results.
The patch also:
1- Adds support in the inliner for the two new remarks and a
test case.
2- Moves emitOptimizationRemark* functions to the llvm namespace.
3- Adds an LLVMContext argument instead of making them member functions
of LLVMContext.
Reviewers: qcolombet
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3682
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209442 91177308-0d34-0410-b5e6-96231b3b80d8
Currently the X86 backend doesn't support types larger than i128 very well. For
example an i192 multiply will assert in codegen when the 2nd argument is a constant and the constant got hoisted.
This fix changes the cost model to never hoist constants for types larger than
i128. Once the codegen issues have been resolved, the cost model can be updated
to allow also larger types.
This is related to <rdar://problem/16954938>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209162 91177308-0d34-0410-b5e6-96231b3b80d8
The cost model conservatively assumes that it will always get scalarized and
that's about as good as we can get with the generic TTI; reasoning whether a
shuffle with an efficient lowering is available is hard. We can override that
conservative estimate for some targets in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209125 91177308-0d34-0410-b5e6-96231b3b80d8
Currently LLVM will generally merge GEPs. This allows backends to use more
complex addressing modes. In some cases this is not happening because there
is PHI inbetween the two GEPs:
GEP1--\
|-->PHI1-->GEP3
GEP2--/
This patch checks to see if GEP1 and GEP2 are similiar enough that they can be
cloned (GEP12) in GEP3's BB, allowing GEP->GEP merging (GEP123):
GEP1--\ --\ --\
|-->PHI1-->GEP3 ==> |-->PHI2->GEP12->GEP3 == > |-->PHI2->GEP123
GEP2--/ --/ --/
This also breaks certain use chains that are preventing GEP->GEP merges that the
the existing instcombine would merge otherwise.
Tests included.
rdar://15547484
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209049 91177308-0d34-0410-b5e6-96231b3b80d8
This allows us to put dynamic initializers for weak data into the same
comdat group as the data being initialized. This is necessary for MSVC
ABI compatibility. Once we have comdats for guard variables, we can use
the combination to help GlobalOpt fire more often for weak data with
guarded initialization on other platforms.
Reviewers: nlewycky
Differential Revision: http://reviews.llvm.org/D3499
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209015 91177308-0d34-0410-b5e6-96231b3b80d8
This patch changes the design of GlobalAlias so that it doesn't take a
ConstantExpr anymore. It now points directly to a GlobalObject, but its type is
independent of the aliasee type.
To avoid changing all alias related tests in this patches, I kept the common
syntax
@foo = alias i32* @bar
to mean the same as now. The cases that used to use cast now use the more
general syntax
@foo = alias i16, i32* @bar.
Note that GlobalAlias now behaves a bit more like GlobalVariable. We
know that its type is always a pointer, so we omit the '*'.
For the bitcode, a nice surprise is that we were writing both identical types
already, so the format change is minimal. Auto upgrade is handled by looking
through the casts and no new fields are needed for now. New bitcode will
simply have different types for Alias and Aliasee.
One last interesting point in the patch is that replaceAllUsesWith becomes
smart enough to avoid putting a ConstantExpr in the aliasee. This seems better
than checking and updating every caller.
A followup patch will delete getAliasedGlobal now that it is redundant. Another
patch will add support for an explicit offset.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209007 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The dividend in an sdiv tells us the largest and smallest possible
results. Use this fact to optimize comparisons against an sdiv with a
constant dividend.
Reviewers: nicholas
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3795
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208999 91177308-0d34-0410-b5e6-96231b3b80d8