Also fix an off-by-one in SelectionDAGBuilder that was preventing shuffle
vectors from being translated to EXTRACT_SUBVECTOR.
Patch by Tim Northover.
The test changes are needed to keep those spill-q tests from testing aligned
spills and restores. If the only aligned stack objects are spill slots, we
no longer realign the stack frame. Prior to this patch, an EXTRACT_SUBVECTOR
was legalized by loading from the stack, which created an aligned frame index.
Now, however, there is nothing except the spill slot in the stack frame, so
I added an aligned alloca.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122995 91177308-0d34-0410-b5e6-96231b3b80d8
We were never generating any of these nodes with variable indices, and there
was one legalizer function asserting on a non-constant index. If we ever have
a need to support variable indices, we can add this back again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122993 91177308-0d34-0410-b5e6-96231b3b80d8
etc. takes an option OptSize. If OptSize is true, it would return
the inline limit for functions with attribute OptSize.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122952 91177308-0d34-0410-b5e6-96231b3b80d8
This pass precomputes CFG block frequency information that can be used by the
register allocator to find optimal spill code placement.
Given an interference pattern, placeSpills() will compute which basic blocks
should have the current variable enter or exit in a register, and which blocks
prefer the stack.
The algorithm is ready to consume block frequencies from profiling data, but for
now it gets by with the static estimates used for spill weights.
This is a work in progress and still not hooked up to RegAllocGreedy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122938 91177308-0d34-0410-b5e6-96231b3b80d8
My i386 llvm-gcc nightly tester found a regression for
SingleSource/Benchmarks/McGill/chomp that a bisect blamed on 122743.
That seems strange but apparently the combination of earlycse and instcombine
did something bad. Chris says he intended to remove the instcombine pass, so
let's go ahead and try that. We'll see if there are any performance losses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122907 91177308-0d34-0410-b5e6-96231b3b80d8
It forms memset and memcpy's, and will someday form popcount and
other stuff. All of this is bad when compiling the implementation
of memset, memcpy, popcount, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122854 91177308-0d34-0410-b5e6-96231b3b80d8
The analysis will be needed by both the greedy register allocator and the
X86FloatingPoint pass. It only needs to be computed once when the CFG doesn't
change.
This pass is very fast, usually showing up as 0.0% wall time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122832 91177308-0d34-0410-b5e6-96231b3b80d8
a pointer value has potentially become escaping. Implementations can choose to either fall back to
conservative responses for that value, or may recompute their analysis to accomodate the change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122777 91177308-0d34-0410-b5e6-96231b3b80d8
improvement in the generated code, and speeds up 'opt -std-compile-opts'
compile time on 176.gcc from 24.84s to 23.2s (about 7%).
This also resolves a specific code quality issue in rdar://7352081 which
was generating poor code for:
int t(int a, int b) {
if (a & b & 1)
return a & b;
return 3;
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122740 91177308-0d34-0410-b5e6-96231b3b80d8
update a callGraph when performing the common operation of splicing the body to
a new function and updating all callers (such as via RAUW).
No users yet, though this is intended for DeadArgumentElimination as part of
PR8887.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122728 91177308-0d34-0410-b5e6-96231b3b80d8
of instcombine that is currently in the middle of the loop pass pipeline. This
commit only checks in the pass; it will hopefully be enabled by default later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122719 91177308-0d34-0410-b5e6-96231b3b80d8
compile, and everyone's tests have shown it to be slower in practice, even for
quite large graphs.
I also hope to do an optimization that is only correct with the simpler data
structure, which would break this even further.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122684 91177308-0d34-0410-b5e6-96231b3b80d8
naively implemented, the Lengauer-Tarjan algorithm requires a separate bucket
for each vertex. However, this is unnecessary, because each vertex is only
placed into a single bucket (that of its semidominator), and each vertex's
bucket is processed before it is added to any bucket itself.
Instead of using a bucket per vertex, we use a single array Buckets that has two
purposes. Before the vertex V with DFS number i is processed, Buckets[i] stores
the index of the first element in V's bucket. After V's bucket is processed,
Buckets[i] stores the index of the next element in the bucket to which V now
belongs, if any.
Reading from the buckets can also be optimized. Instead of processing the bucket
of V's parent at the end of processing V, we process the bucket of V itself at
the beginning of processing V. This means that the case of the root vertex can
be simplified somewhat. It also means that we don't need to look up the DFS
number of the semidominator of every node in the bucket we are processing,
since we know it is the current index being processed.
This is a 6.5% speedup running -domtree on test-suite + SPEC2000/2006, with
larger speedups of around 12% on the larger benchmarks like GCC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122680 91177308-0d34-0410-b5e6-96231b3b80d8
limitations, this kicks in dozens of times in the 4 specfp2000 benchmarks,
and hundreds of times in the int part. It also kicks in hundreds of times
in multisource.
This kicks in right before loop deletion, which has the pleasant effect of
deleting loops that *just* do a memset.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122664 91177308-0d34-0410-b5e6-96231b3b80d8
DAG scheduling during isel. Most new functionality is currently
guarded by -enable-sched-cycles and -enable-sched-hazard.
Added InstrItineraryData::IssueWidth field, currently derived from
ARM itineraries, but could be initialized differently on other targets.
Added ScheduleHazardRecognizer::MaxLookAhead to indicate whether it is
active, and if so how many cycles of state it holds.
Added SchedulingPriorityQueue::HasReadyFilter to allowing gating entry
into the scheduler's available queue.
ScoreboardHazardRecognizer now accesses the ScheduleDAG in order to
get information about it's SUnits, provides RecedeCycle for bottom-up
scheduling, correctly computes scoreboard depth, tracks IssueCount, and
considers potential stall cycles when checking for hazards.
ScheduleDAGRRList now models machine cycles and hazards (under
flags). It tracks MinAvailableCycle, drives the hazard recognizer and
priority queue's ready filter, manages a new PendingQueue, properly
accounts for stall cycles, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122541 91177308-0d34-0410-b5e6-96231b3b80d8
section.
This helps because in practice sections form a dag with debug sections pointing
to text sections. Finishing up the text sections first makes the debug section
relaxation trivial.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122314 91177308-0d34-0410-b5e6-96231b3b80d8
This implementation already exists as ConnectedVNInfoEqClasses in
LiveInterval.cpp, and it seems to be generally useful to have a light-weight way
of forming equivalence classes of small integers.
IntEqClasses doesn't allow enumeration of the elements in a class.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122293 91177308-0d34-0410-b5e6-96231b3b80d8
it could only be tested indirectly, via instcombine, gvn or some other
pass that makes use of InstructionSimplify, which means that testcases
had to be carefully contrived to dance around any other transformations
that that pass did.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122264 91177308-0d34-0410-b5e6-96231b3b80d8
createMachineVerifierPass and MachineFunction::verify.
The banner is printed before the machine code dump, just like the printer pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122113 91177308-0d34-0410-b5e6-96231b3b80d8
The heuristics split around the largest loop where the current register may be
allocated without interference.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122106 91177308-0d34-0410-b5e6-96231b3b80d8
may be called. If the entry block is empty, the insertion point iterator will be
the "end()" value. Calling ->getParent() on it (among others) causes problems.
Modify materializeFrameBaseRegister to take the machine basic block and insert
the frame base register at the beginning of that block. (It's very similar to
what the code does all ready. The only difference is that it will always insert
at the beginning of the entry block instead of after a previous materialization
of the frame base register. I doubt that that matters here.)
<rdar://problem/8782198>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122104 91177308-0d34-0410-b5e6-96231b3b80d8
moves the iterator to end(), and it is valid to call it on end().
That means it is valid to call advanceTo() with any monotonic key sequence.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122092 91177308-0d34-0410-b5e6-96231b3b80d8
IsSymbolRefDifferenceFullyResolved, it turns out this does change behavior on
enough cases for x86-32 that I would rather wait a bit on it.
- In practice, we will want to change this eventually because it only means we
generate less relocations (it also eliminates the need for the horrible
'.set' hack that Darwin requires in some places).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122042 91177308-0d34-0410-b5e6-96231b3b80d8
This is a three-way interval list intersection between a virtual register, a
live interval union, and a loop. It will be used to identify interference-free
loops for live range splitting.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122034 91177308-0d34-0410-b5e6-96231b3b80d8
the MCCodeEmitter, which seems like a better organization.
- Also, cleaned up some magic constants while in the area.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121953 91177308-0d34-0410-b5e6-96231b3b80d8
IntervalMaps.
The IntervalMaps can have different template parameters, but the KeyT and Traits
types must be the same.
Tests are forthcoming.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121935 91177308-0d34-0410-b5e6-96231b3b80d8
A MachineLoopRange contains the intervals of slot indexes covered by the blocks
in a loop. This representation of the loop blocks is more efficient to compare
against interfering registers during register coalescing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121917 91177308-0d34-0410-b5e6-96231b3b80d8
Clang is now providing intrinsics for these and so we need to support them
in the backend. Radar 8068427.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121902 91177308-0d34-0410-b5e6-96231b3b80d8
attributes "interrupt_handle" and "save_volatiles". Support for lowering these
correctly will be in an upcoming commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121888 91177308-0d34-0410-b5e6-96231b3b80d8
With this we don't need the EffectiveSize field anymore. Without that field
LayoutFragment only updates offsets and we don't need to invalidate the
current fragment when it is relaxed (only the ones following it).
This is also a very small improvement in the accuracy of the layout info as
we now use the after relaxation size immediately.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121857 91177308-0d34-0410-b5e6-96231b3b80d8
registers that alias Reg, including itself. This is almost the same as the
existing getAliasSet() method, except for the inclusion of Reg.
The name matches the reflexive TRI::regsOverlap(x, y) relation.
It is very common to do stuff to a register and all its aliases:
stuff(Reg)
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias)
stuff(*Alias);
That can now be written as the simpler:
for (const unsigned *Alias = TRI->getOverlaps(Reg); *Alias; ++Alias)
stuff(*Alias);
This change requires a bit more constant space for the alias lists because Reg
is included and because the empty alias list cannot be shared any longer.
If the getAliasSet method is eventually removed, this space can be reclaimed by
sharing overlap lists. For instance, %rax and %eax have identical overlap sets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121800 91177308-0d34-0410-b5e6-96231b3b80d8
AliasAnalysis consumers, PartialAlias will be treated as MayAlias.
For AliasAnalysis chaining, MayAlias says "procede to the next analysis".
PartialAlias will be used to indicate that the query should terminate,
even though it didn't reach MustAlias or NoAlias.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121507 91177308-0d34-0410-b5e6-96231b3b80d8
the offset. Add a new fixup flag to represent this, and use it for the one fixups that I have a testcase for needing
this. It's quite likely that the other Thumb fixups will need this too, and to have their fixup encoding logic
adjusted accordingly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121408 91177308-0d34-0410-b5e6-96231b3b80d8
both forward and backward scheduling. Rename it to
ScoreboardHazardRecognizer (Scoreboard is one word). Remove integer
division from the scoreboard's critical path.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121274 91177308-0d34-0410-b5e6-96231b3b80d8
This new register allocator is initially identical to RegAllocBasic, but it will
receive all of the tricks that RegAllocBasic won't get.
RegAllocGreedy will eventually replace linear scan.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121234 91177308-0d34-0410-b5e6-96231b3b80d8
before:
4 assembler - Number of assembler layout and relaxation steps
78563 assembler - Number of emitted assembler fragments
8693904 assembler - Number of emitted object file bytes
271223 assembler - Number of evaluated fixups
330771677 assembler - Number of fragment layouts
5958 assembler - Number of relaxed instructions
2508361 mcexpr - Number of MCExpr evaluations
real 0m26.123s
user 0m25.694s
sys 0m0.388s
after:
4 assembler - Number of assembler layout and relaxation steps
78563 assembler - Number of emitted assembler fragments
8693904 assembler - Number of emitted object file bytes
271223 assembler - Number of evaluated fixups
231507 assembler - Number of fragment layouts
5958 assembler - Number of relaxed instructions
2508361 mcexpr - Number of MCExpr evaluations
real 0m2.500s
user 0m2.113s
sys 0m0.273s
And yes, the outputs are identical :-)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121207 91177308-0d34-0410-b5e6-96231b3b80d8
zextOrTrunc(), and APSInt methods extend(), extOrTrunc() and new method
trunc(), to be const and to return a new value instead of modifying the
object in place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121120 91177308-0d34-0410-b5e6-96231b3b80d8
namespace. None of them return anything except for success anyway. These will be
converted to returning their result soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121109 91177308-0d34-0410-b5e6-96231b3b80d8
actuall addresses in a .o file, so it is better to let the MachO writer compute
it.
This is good for two reasons. First, areas that shouldn't care about
addresses now don't have access to it. Second, the layout of each section
is independent. I should use this in a subsequent commit to speed it up.
Most of the patch is just removing the section address computation. The two
interesting parts are the change on how we handle padding in the end
of sections and how MachO can get the address of a-b when a and b are in
different sections.
Since now the expression evaluation normally doesn't know the section address,
it will think that a-b needs relocation and let the MachO writer know. Once
it has computed the section addresses, it calls back the expression evaluation
with the section addresses to resolve these expressions.
The remaining problem is the handling of padding. Currently it will create
a special alignment fragment at the end. Since that fragment doesn't update
the alignment of the section, it needs the real address to be computed.
Since now the layout will not compute a-b with a and b in different sections,
the only effect that the special alignment fragment has is update the
address size of the section. This can also be done by the MachO writer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121076 91177308-0d34-0410-b5e6-96231b3b80d8
as llc + llvm-mc. This time ELF is not changed and I tested that llvm-gcc
bootstrap on darwin10 using darwin9's assembler and linker.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121006 91177308-0d34-0410-b5e6-96231b3b80d8
memcpy's like:
memcpy(A, B)
memcpy(A, C)
we cannot delete the first memcpy as dead if A and C might be aliases.
If so, we actually get:
memcpy(A, B)
memcpy(A, A)
which is not correct to transform into:
memcpy(A, A)
This patch was heavily influenced by Jakub Staszak's patch in PR8728, thanks
Jakub!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120974 91177308-0d34-0410-b5e6-96231b3b80d8
foo = a - b
.long foo
instead of just
.long a - b
First, on darwin9 64 bits the assembler produces the wrong result. Second,
if "a" is the end of the section all darwin assemblers (9, 10 and mc) will not
consider a - b to be a constant but will if the dummy foo is created.
Split how we handle these cases. The first one is something MC should take care
of. The second one has to be handled by the caller.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120889 91177308-0d34-0410-b5e6-96231b3b80d8
doing that if the target is darwin10 or newer.
This fixes
*) Direct object emission was producing objects without the workaround on
darwin9.
*) Assembly printing was producing objects with the workaround on linux.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120866 91177308-0d34-0410-b5e6-96231b3b80d8
editing of the current interval.
These methods may cause coalescing, there are corresponding set*Unchecked
methods for editing without coalescing. The non-coalescing methods are useful
for applying monotonic transforms to all keys or values in a map without
accidentally coalescing transformed and untransformed intervals.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120829 91177308-0d34-0410-b5e6-96231b3b80d8