- If destination is a physical register and it has a subreg index, use the
sub-register instead.
This fixes PR5423.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@88745 91177308-0d34-0410-b5e6-96231b3b80d8
target-specific AsmPrinters. Not all comments need DebugInfo.
Re-enable the line numbers comment test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@88697 91177308-0d34-0410-b5e6-96231b3b80d8
code-size win, and not when it's only likely to be code-size neutral,
such as when only a single instruction would be eliminated and a new
branch would be required.
This fixes rdar://7392894.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@88692 91177308-0d34-0410-b5e6-96231b3b80d8
D0<def,dead> = ...
...
= S0<use, kill>
S0<def> = ...
...
D0<def> =
The first D0 def is correctly marked dead, however, livevariables should have
added an implicit def of S0 or we end up with a use without a def.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@88690 91177308-0d34-0410-b5e6-96231b3b80d8
running IPSCCP early, and we run functionattrs interlaced with the inliner,
we often (particularly for small or noop functions) completely propagate
all of the information about a call to its call site in IPSSCP (making a call
dead) and functionattrs is smart enough to realize that the function is
readonly (because it is interlaced with inliner).
To improve compile time and make the inliner threshold more accurate, realize
that we don't have to inline dead readonly function calls. Instead, just
delete the call. This happens all the time for C++ codes, here are some
counters from opt/llvm-ld counting the number of times calls were deleted vs
inlined on various apps:
Tramp3d opt:
5033 inline - Number of call sites deleted, not inlined
24596 inline - Number of functions inlined
llvm-ld:
667 inline - Number of functions deleted because all callers found
699 inline - Number of functions inlined
483.xalancbmk opt:
8096 inline - Number of call sites deleted, not inlined
62528 inline - Number of functions inlined
llvm-ld:
217 inline - Number of allocas merged together
2158 inline - Number of functions inlined
471.omnetpp:
331 inline - Number of call sites deleted, not inlined
8981 inline - Number of functions inlined
llvm-ld:
171 inline - Number of functions deleted because all callers found
629 inline - Number of functions inlined
Deleting a call is much faster than inlining it, and is insensitive to the
size of the callee. :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86975 91177308-0d34-0410-b5e6-96231b3b80d8
cannot be folded into target cmp instruction.
- Avoid a phase ordering issue where early cmp optimization would prevent the
later count-to-zero optimization.
- Add missing checks which could cause LSR to reuse stride that does not have
users.
- Fix a bug in count-to-zero optimization code which failed to find the pre-inc
iv's phi node.
- Remove, tighten, loosen some incorrect checks disable valid transformations.
- Quite a bit of code clean up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86969 91177308-0d34-0410-b5e6-96231b3b80d8
tail merging support to handle more cases.
- Recognize several cases where tail merging is beneficial even when
the tail size is smaller than the generic threshold.
- Make use of MachineInstrDesc::isBarrier to help detect
non-fallthrough blocks.
- Check for and avoid disrupting fall-through edges in more cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86871 91177308-0d34-0410-b5e6-96231b3b80d8
llvm.invariant.start to be used without necessarily being paired with a call
to llvm.invariant.end. If you run the entire optimization pipeline then such
calls are in fact deleted (adce does it), but that's actually a good thing since
we probably do want them to be zapped late in the game. There should really be
an integration test that checks that the llvm.invariant.start call lasts long
enough that all passes that do interesting things with it get to do their stuff
before it is deleted. But since no passes do anything interesting with it yet
this will have to wait for later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86840 91177308-0d34-0410-b5e6-96231b3b80d8
constant whose component type is not a legal type for the target.
(If the target ConstantPool cannot handle this type either, it has
an opportunity to merge elements. In practice any target with
8-bit bytes must support i8 *as data*). 7320806 (partial).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86751 91177308-0d34-0410-b5e6-96231b3b80d8
generates a sequence similar to this:
__Z4funci:
LFB2:
mflr r0
LCFI0:
stmw r30,-8(r1)
LCFI1:
stw r0,8(r1)
LCFI2:
stwu r1,-80(r1)
LCFI3:
mr r30,r1
LCFI4:
where LCFI3 and LCFI4 are used by the FDE to indicate what the FP, LR, and other
things are. We generated something more like this:
Leh_func_begin1:
mflr r0
stw r31, 20(r1)
stw r0, 8(r1)
Llabel1:
stwu r1, -80(r1)
Llabel2:
mr r31, r1
Note that we are missing the "mr" instruction. This patch makes it more like the
GCC output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86729 91177308-0d34-0410-b5e6-96231b3b80d8
debug intrinsics, and an unconditional branch when possible. This
reuses the TryToSimplifyUncondBranchFromEmptyBlock function split
out of simplifycfg.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86722 91177308-0d34-0410-b5e6-96231b3b80d8
just one level deep. On the testcase we go from getting this:
F1: ; preds = %T2
%F = and i1 true, %cond ; <i1> [#uses=1]
br i1 %F, label %X, label %Y
to a fully threaded:
F1: ; preds = %T2
br label %Y
This changes gets us to the point where we're forming (too many) switch
instructions on doug's strswitch testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86646 91177308-0d34-0410-b5e6-96231b3b80d8
the loop. This is needed because with indirectbr it may not be possible
for LoopSimplify to guarantee that all loop exit predecessors are
inside the loop. This fixes PR5437.
LCCSA no longer actually requires LoopSimplify form, but for now it
must still have the dependency because the PassManager doesn't know
how to schedule LoopSimplify otherwise.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86569 91177308-0d34-0410-b5e6-96231b3b80d8
here:
1) We need to avoid processing sigma nodes as phi nodes for constraint generation.
2) We need to generate constraints for comparisons against constants properly.
This includes our first working ABCD test!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86498 91177308-0d34-0410-b5e6-96231b3b80d8
when both the source and dest are illegal types, since it would cause
the phi to grow (for example, we shouldn't transform test14b's phi to
a phi on i320). This fixes an infinite loop on i686 bootstrap with
phi slicing turned on, so turn it back on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86483 91177308-0d34-0410-b5e6-96231b3b80d8
Also, fix a few other details of the cmake test target and rename it to
'check'. CMake tests now work for the most part, but there are a handful of
failures left due to missing site.exp bits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86452 91177308-0d34-0410-b5e6-96231b3b80d8
not turn a PHI in a legal type into a PHI of an illegal type, and
add a new optimization that breaks up insane integer PHI nodes into
small pieces (PR3451).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86443 91177308-0d34-0410-b5e6-96231b3b80d8
1. rename the movhp patfrag to movlhps, since thats what it actually matches
2. eliminate the bogus movhps load and store patterns, they were incorrect. The load transforms are already handled (correctly) by shufps/unpack.
3. revert a recent test change to its correct form.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86415 91177308-0d34-0410-b5e6-96231b3b80d8
(eliminating some extends) if the new type of the
computation is legal or if both the source and dest
are illegal. This prevents instcombine from changing big
chains of computation into i64 on 32-bit targets for
example.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86398 91177308-0d34-0410-b5e6-96231b3b80d8