Allow the folding of vbroadcastRR to vbroadcastRM, where the memory operand is a spill slot.
PR12782.
Together with Michael Kuperstein <michael.m.kuperstein@intel.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160230 91177308-0d34-0410-b5e6-96231b3b80d8
X86MachineFunctionInfo as this is currently only used by X86. If this ever
becomes an issue on another arch (e.g., ARM) then we can hoist it back out.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160009 91177308-0d34-0410-b5e6-96231b3b80d8
X86. Basically, this is a reapplication of r158087 with a few fixes.
Specifically, (1) the stack pointer is restored from the base pointer before
popping callee-saved registers and (2) in obscure cases (see comments in patch)
we must cache the value of the original stack adjustment in the prologue and
apply it in the epilogue.
rdar://11496434
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160002 91177308-0d34-0410-b5e6-96231b3b80d8
multiple scalars and insert them into a vector. Next, we shuffle the elements
into the correct places, as before.
Also fix a small dagcombine bug in SimplifyBinOpWithSameOpcodeHands, when the
migration of bitcasts happened too late in the SelectionDAG process.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159991 91177308-0d34-0410-b5e6-96231b3b80d8
getCondFromSETOpc, getCondFromCMovOpc, getSETFromCond, getCMovFromCond
No functional change intended.
If we want to update the condition code of CMOV|SET|Jcc, we first analyze the
opcode to get the condition code, then update the condition code, finally
synthesize the new opcode form the new condition code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159955 91177308-0d34-0410-b5e6-96231b3b80d8
subtarget CPU descriptions and support new features of
MachineScheduler.
MachineModel has three categories of data:
1) Basic properties for coarse grained instruction cost model.
2) Scheduler Read/Write resources for simple per-opcode and operand cost model (TBD).
3) Instruction itineraties for detailed per-cycle reservation tables.
These will all live side-by-side. Any subtarget can use any
combination of them. Instruction itineraries will not change in the
near term. In the long run, I expect them to only be relevant for
in-order VLIW machines that have complex contraints and require a
precise scheduling/bundling model. Once itineraries are only actively
used by VLIW-ish targets, they could be replaced by something more
appropriate for those targets.
This tablegen backend rewrite sets things up for introducing
MachineModel type #2: per opcode/operand cost model.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159891 91177308-0d34-0410-b5e6-96231b3b80d8
It is safe if EFLAGS is killed or re-defined.
When we are done with the basic block, check whether EFLAGS is live-out.
Do not optimize away cmp if EFLAGS is live-out.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159888 91177308-0d34-0410-b5e6-96231b3b80d8
For each Cmp, we check whether there is an earlier Sub which make Cmp
redundant. We handle the case where SUB operates on the same source operands as
Cmp, including the case where the two source operands are swapped.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159838 91177308-0d34-0410-b5e6-96231b3b80d8
Function argument and return value registers aren't part of the
encoding, so they should be implicit operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159728 91177308-0d34-0410-b5e6-96231b3b80d8
The CopyToReg nodes that set up the argument registers before a call
must be glued to the call instruction. Otherwise, the scheduler may emit
the physreg copies long before the call, causing long live ranges for
the fixed registers.
Besides disabling good register allocation, that can also expose
problems when EmitInstrWithCustomInserter() splits a basic block during
the live range of a physreg.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159721 91177308-0d34-0410-b5e6-96231b3b80d8
Implement the TII hooks needed by EarlyIfConversion to create cmov
instructions and estimate their latency.
Early if-conversion is still not enabled by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159695 91177308-0d34-0410-b5e6-96231b3b80d8
This is a preliminary step toward having TargetPassConfig be able to
start and stop the compilation at specified passes for unit testing
and debugging. No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159567 91177308-0d34-0410-b5e6-96231b3b80d8
Before this patch in pic 32 bit code we would add the global base register
and not load from that address. This is a really old bug, but before the
introduction of the tls attributes we would never select initial exec for
pic code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159409 91177308-0d34-0410-b5e6-96231b3b80d8
Corrected type for index of llvm.x86.avx2.gather.d.pd.256
from 256-bit to 128-bit.
Corrected types for src|dst|mask of llvm.x86.avx2.gather.q.ps.256
from 256-bit to 128-bit.
Support the following intrinsics:
llvm.x86.avx2.gather.d.q, llvm.x86.avx2.gather.q.q
llvm.x86.avx2.gather.d.q.256, llvm.x86.avx2.gather.q.q.256
llvm.x86.avx2.gather.d.d, llvm.x86.avx2.gather.q.d
llvm.x86.avx2.gather.d.d.256, llvm.x86.avx2.gather.q.d.256
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159402 91177308-0d34-0410-b5e6-96231b3b80d8
include/llvm/Analysis/DebugInfo.h to include/llvm/DebugInfo.h.
The reasoning is because the DebugInfo module is simply an interface to the
debug info MDNodes and has nothing to do with analysis.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159312 91177308-0d34-0410-b5e6-96231b3b80d8
up to r158925 were handled as processor specific. Making them
generic and putting tests for these modifiers in the CodeGen/Generic
directory caused a number of targets to fail.
This commit addresses that problem by having the targets call
the generic routine for generic modifiers that they don't currently
have explicit code for.
For now only generic print operands 'c' and 'n' are supported.vi
Affected files:
test/CodeGen/Generic/asm-large-immediate.ll
lib/Target/PowerPC/PPCAsmPrinter.cpp
lib/Target/NVPTX/NVPTXAsmPrinter.cpp
lib/Target/ARM/ARMAsmPrinter.cpp
lib/Target/XCore/XCoreAsmPrinter.cpp
lib/Target/X86/X86AsmPrinter.cpp
lib/Target/Hexagon/HexagonAsmPrinter.cpp
lib/Target/CellSPU/SPUAsmPrinter.cpp
lib/Target/Sparc/SparcAsmPrinter.cpp
lib/Target/MBlaze/MBlazeAsmPrinter.cpp
lib/Target/Mips/MipsAsmPrinter.cpp
MSP430 isn't represented because it did not even run with
the long existing 'c' modifier and it was not apparent what
needs to be done to get it inline asm ready.
Contributer: Jack Carter
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159203 91177308-0d34-0410-b5e6-96231b3b80d8
The function live-out registers must be live at all function returns,
and %RCX is only used by eh.return. When a function also has a normal
return, only %RAX holds a return value.
This fixes PR13188.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159116 91177308-0d34-0410-b5e6-96231b3b80d8