location in simplifycfg. In the old days, SimplifyCFG was never run on
the entry block, so we had to scan over all preds of the BB passed into
simplifycfg to do this xform, now we can just check blocks ending with
a condbranch. This avoids a scan over all preds of every simplified
block, which should be a significant compile-time perf win on functions
with lots of edges. No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121668 91177308-0d34-0410-b5e6-96231b3b80d8
(x & 2^n) ? 2^m+C : C
we can offset both arms by C to get the "(x & 2^n) ? 2^m : 0" form, optimize the
select to a shift and apply the offset afterwards.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121609 91177308-0d34-0410-b5e6-96231b3b80d8
The last uses of these functions were removed in r113852 when LazyValueInfo was permanently enabled and removed the need for them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121133 91177308-0d34-0410-b5e6-96231b3b80d8
zextOrTrunc(), and APSInt methods extend(), extOrTrunc() and new method
trunc(), to be const and to return a new value instead of modifying the
object in place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121120 91177308-0d34-0410-b5e6-96231b3b80d8
(if available) as we go so that we get simple constantexprs not insane ones.
This fixes the failure of clang/test/CodeGenCXX/virtual-base-ctor.cpp
that the previous iteration of this patch had.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121111 91177308-0d34-0410-b5e6-96231b3b80d8
optimization.
Consider:
static void foo() {
A = alloca
...
}
static void bar() {
B = alloca
...
call foo();
}
void main() {
bar()
}
The inliner proceeds bottom up, but lets pretend it decides not to inline foo
into bar. When it gets to main, it inlines bar into main(), and says "hey, I
just inlined an alloca "B" into main, lets remember that. Then it keeps going
and finds that it now contains a call to foo. It decides to inline foo into
main, and says "hey, foo has an alloca A, and I have an alloca B from another
inlined call site, lets reuse it". The problem with this of course, is that
the lifetime of A and B are nested, not disjoint.
Unfortunately I can't create a reasonable testcase for this: the one in the
PR is both huge and extremely sensitive, because you minor tweaks end up
causing foo to get inlined into bar too early. We already have tests for the
basic alloca merging optimization and this does not break them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120995 91177308-0d34-0410-b5e6-96231b3b80d8
memcpy's like:
memcpy(A, B)
memcpy(A, C)
we cannot delete the first memcpy as dead if A and C might be aliases.
If so, we actually get:
memcpy(A, B)
memcpy(A, A)
which is not correct to transform into:
memcpy(A, A)
This patch was heavily influenced by Jakub Staszak's patch in PR8728, thanks
Jakub!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120974 91177308-0d34-0410-b5e6-96231b3b80d8
Should have no functional change other than the order of two transformations that are mutually-exclusive and the exact formatting of debug output.
Internally, it now stores the ConstantInt*s as Constant*s, and actual undef values instead of nulls.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120946 91177308-0d34-0410-b5e6-96231b3b80d8
20040709-1.c from the gcc testsuite. I was using the size of a
pointer instead of the pointee. This fixes rdar://8713376
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120519 91177308-0d34-0410-b5e6-96231b3b80d8
may-aliasing stores that partially overlap with different base
pointers. This implements PR6043 and the non-variable part of
PR8657
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120485 91177308-0d34-0410-b5e6-96231b3b80d8
1. if the underlying pointer passed in can be resolved
to any argument or alloca, then we don't need to scan.
Previously we would only avoid the scan if the alloca
or byval was actually considered dead.
2. The dead store processing code is itself completely
dead and didn't handle volatile stores right anyway,
so delete it. This allows simplifying the interface
to RemoveAccessedObjects.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120467 91177308-0d34-0410-b5e6-96231b3b80d8
made sense to me. We now have a set of dead stack objects, and
they become live when loaded. Fix a theoretical problem where
we'd pass in the wrong pointer to the alias query.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120465 91177308-0d34-0410-b5e6-96231b3b80d8
If the call might read all the allocas, stop scanning early.
Convert a vector to smallvector, shrink SmallPtrSet to 16 instead
of 64 to avoid crazy linear scans.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120463 91177308-0d34-0410-b5e6-96231b3b80d8
now that DSE hacks on them. This fixes a regression I introduced,
by generalizing DSE to hack on transfers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120445 91177308-0d34-0410-b5e6-96231b3b80d8
about pairs of AA::Location's instead of looking for MemDep's
"Def" predicate. This is more powerful and general, handling
memset/memcpy/store all uniformly, and implementing PR8701 and
probably obsoleting parts of memcpyoptimizer.
This also fixes an obscure bug with init.trampoline and i8
stores, but I'm not surprised it hasn't been hit yet. Enhancing
init.trampoline to carry the size that it stores would allow
DSE to be much more aggressive about optimizing them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120406 91177308-0d34-0410-b5e6-96231b3b80d8
is trivially dead, since these have side effects. This makes the
(misnamed) MemoryUseIntrinsic class dead, so remove it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120382 91177308-0d34-0410-b5e6-96231b3b80d8
contains "ref".
Enhance DSE to use a modref query instead of a store-specific hack
to generalize the "ignore may-alias stores" optimization to handle
memset and memcpy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120368 91177308-0d34-0410-b5e6-96231b3b80d8
1. Don't bother trying to optimize:
lifetime.end(ptr)
store(ptr)
as it is undefined, and therefore shouldn't exist.
2. Move the 'storing a loaded pointer' xform up, simplifying
the may-aliased store code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120359 91177308-0d34-0410-b5e6-96231b3b80d8
by my recent GVN improvement. Looking through a single layer of
PHI nodes when attempting to sink GEPs, we need to iteratively
look through arbitrary PHI nests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120202 91177308-0d34-0410-b5e6-96231b3b80d8
fairly systematic way in instcombine. Some of these cases were already dealt
with, in which case I removed the existing code. The case of Add has a bunch of
funky logic which covers some of this plus a few variants (considers shifts to be
a form of multiplication), which I didn't touch. The simplification performed is:
A*B+A*C -> A*(B+C). The improvement is to do this in cases that were not already
handled [such as A*B-A*C -> A*(B-C), which was reported on the mailing list], and
also to do it more often by not checking for "only one use" if "B+C" simplifies.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120024 91177308-0d34-0410-b5e6-96231b3b80d8
method in MemDep instead of inserting an instruction, doing a query,
then removing it. Neither operation is effectively cached.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119930 91177308-0d34-0410-b5e6-96231b3b80d8
void a(int x) { if (((1<<x)&8)==0) b(); }
into "x != 3", which occurs over 100 times in 403.gcc but in no
other program in llvm-test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119922 91177308-0d34-0410-b5e6-96231b3b80d8
allowing the memcpy to be eliminated.
Unfortunately, the requirements on byval's without explicit
alignment are really weak and impossible to predict in the
mid-level optimizer, so this doesn't kick in much with current
frontends. The fix is to change clang to set alignment on all
byval arguments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119916 91177308-0d34-0410-b5e6-96231b3b80d8
if all the operands of the PHI are equivalent. This allows CodeGenPrepare to undo
unprofitable PRE transforms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119853 91177308-0d34-0410-b5e6-96231b3b80d8
preserves LCSSA form out of ScalarEvolution and into the LoopInfo
class. Use it to check that SimplifyInstruction simplifications
are not breaking LCSSA form. Fixes PR8622.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119727 91177308-0d34-0410-b5e6-96231b3b80d8
this was a tree of hashtables, and a query recursed into the table for the immediate dominator ad infinitum
if the initial lookup failed. This led to really bad performance on tall, narrow CFGs.
We can instead replace it with what is conceptually a multimap of value numbers to leaders (actually
represented by a hashtable with a list of Value*'s as the value type), and then
determine which leader from that set to use very cheaply thanks to the DFS numberings maintained by
DominatorTree. Because there are typically few duplicates of a given value, this scan tends to be
quite fast. Additionally, we use a custom linked list and BumpPtr allocation to avoid any unnecessary
allocation in representing the value-side of the multimap.
This change brings with it a 15% (!) improvement in the total running time of GVN on 403.gcc, which I
think is pretty good considering that includes all the "real work" being done by MemDep as well.
The one downside to this approach is that we can no longer use GVN to perform simple conditional progation,
but that seems like an acceptable loss since we now have LVI and CorrelatedValuePropagation to pick up
the slack. If you see conditional propagation that's not happening, please file bugs against LVI or CVP.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119714 91177308-0d34-0410-b5e6-96231b3b80d8
refusing to optimize two memcpy's like this:
copy A <- B
copy C <- A
if it couldn't prove that noalias(B,C). We can eliminate
the copy by producing a memmove instead of memcpy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119694 91177308-0d34-0410-b5e6-96231b3b80d8
there is no need to check to see if the source and dest of a memcpy are noalias,
behavior is undefined if not.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119691 91177308-0d34-0410-b5e6-96231b3b80d8
if it is passed as a byval argument. The byval argument will just be a
read, so it is safe to read from the original global instead. This allows
us to promote away the %agg.tmp alloca in PR8582
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119686 91177308-0d34-0410-b5e6-96231b3b80d8
instructions out of InstCombine and into InstructionSimplify. While
there, introduce an m_AllOnes pattern to simplify matching with integers
and vectors with all bits equal to one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119536 91177308-0d34-0410-b5e6-96231b3b80d8
hasConstantValue. I was leery of using SimplifyInstruction
while the IR was still in a half-baked state, which is the
reason for delaying the simplification until the IR is fully
cooked.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119494 91177308-0d34-0410-b5e6-96231b3b80d8
systematically, CollapsePhi will always return null here. Note
that CollapsePhi did an extra check, isSafeReplacement, which
the SimplifyInstruction logic does not do. I think that check
was bogus - I guess we will soon find out! (It was originally
added in commit 41998 without a testcase).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119456 91177308-0d34-0410-b5e6-96231b3b80d8
offload the work to hasConstantValue rather than do something more
complicated (such handling mutually recursive phis) because (1) it is
not clear it is worth it; and (2) if it is worth it, maybe such logic
would be better placed in hasConstantValue. Adjust some GVN tests
which are now cleaned up much further (eg: all phi nodes are removed).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119043 91177308-0d34-0410-b5e6-96231b3b80d8
SimplifyAssociativeOrCommutative) "(A op C1) op C2" -> "A op (C1 op C2)",
which previously was only done if C1 and C2 were constants, to occur whenever
"C1 op C2" simplifies (a la InstructionSimplify). Since the simplifying operand
combination can no longer be assumed to be the right-hand terms, consider all of
the possible permutations. When compiling "gcc as one big file", transform 2
(i.e. using right-hand operands) fires about 4000 times but it has to be said
that most of the time the simplifying operands are both constants. Transforms
3, 4 and 5 each fired once. Transform 6, which is an existing transform that
I didn't change, never fired. With this change, the testcase is now optimized
perfectly with one run of instcombine (previously it required instcombine +
reassociate + instcombine, and it may just have been luck that this worked).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119002 91177308-0d34-0410-b5e6-96231b3b80d8
"%z = %x and %y". If GVN can prove that %y equals %x, then it turns
this into "%z = %x and %x". With the new code, %z will be replaced
with %x everywhere (and then deleted). Previously %z would be value
numbered too, which is a waste of time. Also, while a clever value
numbering algorithm would give %z the same value number as %x, our
current one doesn't do so (at least I don't think it does). The new
logic has an essentially equivalent effect to what you would get if
%z was given the same value number as %x, i.e. it should make value
numbering smarter. While there, get hold of target data once at the
start rather than a gazillion times all over the place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118923 91177308-0d34-0410-b5e6-96231b3b80d8
testing for dereferenceable pointers into a helper function,
isDereferenceablePointer. Teach it how to reason about GEPs
with simple non-zero indices.
Also eliminate ArgumentPromtion's IsAlwaysValidPointer,
which didn't check for weak externals or out of range gep
indices.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118840 91177308-0d34-0410-b5e6-96231b3b80d8
references. For example, this allows gvn to eliminate the load in
this example:
void foo(int n, int* p, int *q) {
p[0] = 0;
p[1] = 1;
if (n) {
*q = p[0];
}
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118714 91177308-0d34-0410-b5e6-96231b3b80d8
memory. This isn't a real improvement with present day AliasAnalysis
implementations; it's mainly for consistency.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118624 91177308-0d34-0410-b5e6-96231b3b80d8
to optionally look for constant or local (alloca) memory.
Teach BasicAliasAnalysis::pointsToConstantMemory to look through Select
and Phi nodes, and to support looking for local memory.
Remove FunctionAttrs' PointsToLocalOrConstantMemory function, now that
AliasAnalysis knows all the tricks that it knew.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118412 91177308-0d34-0410-b5e6-96231b3b80d8
threshold given to createFunctionInliningPass().
Both opt -O3 and clang would silently ignore the -inline-threshold option.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118117 91177308-0d34-0410-b5e6-96231b3b80d8
consider it to be readonly. In fact, don't even consider it to be
readonly if it does a volatile load from an AllocaInst either (it
is debatable as to whether readonly would be correct or not in this
case; play safe for the moment). This fixes PR8279.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117783 91177308-0d34-0410-b5e6-96231b3b80d8
This code had previously used 2*N, where N is the mask length, to represent
undef. That is not safe because the shufflevector operands may have more
than N elements -- they don't have to match the result type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117721 91177308-0d34-0410-b5e6-96231b3b80d8
Allow splats even if they don't match either of the original shuffles,
possibly due to undef entries in the shuffles masks. Radar 8597790.
Also fix some 80-column violations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117719 91177308-0d34-0410-b5e6-96231b3b80d8
needs to be guaranteed never to be run on an unreachable block. However, earlier block simplifications may have
changed the CFG to make block that were reachable when we began our iteration unreachable by the time we try to
simplify them. (Note that this also means that our depth-first iterators were potentially being invalidated).
This should not have a large impact on code quality, since later runs of instcombine should pick up these simplifications.
Fixes PR8506.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117709 91177308-0d34-0410-b5e6-96231b3b80d8
it isn't unreachable and should not be zapped. The check for the entry block
was missing in one case: a block containing a unwind instruction. While there,
do some small cleanups: "M" is not a great name for a Function* (it would be
more appropriate for a Module*), change it to "Fn"; use Fn in more places.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117224 91177308-0d34-0410-b5e6-96231b3b80d8
must be called in the pass's constructor. This function uses static dependency declarations to recursively initialize
the pass's dependencies.
Clients that only create passes through the createFooPass() APIs will require no changes. Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.
I have tested this with all standard configurations of clang and llvm-gcc on Darwin. It is possible that there are problems
with the static dependencies that will only be visible with non-standard options. If you encounter any crash in pass
registration/creation, please send the testcase to me directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116820 91177308-0d34-0410-b5e6-96231b3b80d8
perform initialization without static constructors AND without explicit initialization
by the client. For the moment, passes are required to initialize both their
(potential) dependencies and any passes they preserve. I hope to be able to relax
the latter requirement in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116334 91177308-0d34-0410-b5e6-96231b3b80d8
formulae which become illegal as a result of the offset updating don't
escape.
This is for rdar://8529692. No testcase yet, because the given cases
hit use-list ordering differences.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116093 91177308-0d34-0410-b5e6-96231b3b80d8
This doesn't usually matter, because the other heuristics usually
succeed regardless, but it's good to keep the register use
bookkeeping consistent.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116005 91177308-0d34-0410-b5e6-96231b3b80d8
initialization functions that initialize the set of passes implemented in
that library. Add C bindings for these functions as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115927 91177308-0d34-0410-b5e6-96231b3b80d8
a header declaring them all. This is also where we will declare per-library pass-set
initializer functions down the road.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115900 91177308-0d34-0410-b5e6-96231b3b80d8
Anyone interested in more general PRE would be better served by implementing it separately, to get real
anticipation calculation, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115337 91177308-0d34-0410-b5e6-96231b3b80d8
The x86_mmx type is used for MMX intrinsics, parameters and
return values where these use MMX registers, and is also
supported in load, store, and bitcast.
Only the above operations generate MMX instructions, and optimizations
do not operate on or produce MMX intrinsics.
MMX-sized vectors <2 x i32> etc. are lowered to XMM or split into
smaller pieces. Optimizations may occur on these forms and the
result casted back to x86_mmx, provided the result feeds into a
previous existing x86_mmx operation.
The point of all this is prevent optimizations from introducing
MMX operations, which is unsafe due to the EMMS problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115243 91177308-0d34-0410-b5e6-96231b3b80d8
code size (making this transform code size neutral), and it allows us to hoist values out of loops, which is always
a good thing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115205 91177308-0d34-0410-b5e6-96231b3b80d8
Because of this, we cannot use the Simplify* APIs, as they can assert-fail on unreachable code. Since it's not easy to determine
if a given threading will cause a block to become unreachable, simply defer simplifying simplification to later InstCombine and/or
DCE passes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115082 91177308-0d34-0410-b5e6-96231b3b80d8
register pressure and thus excess spills, which we don't currently recover from well. This should
be re-evaluated in the future if our ability to generate good spills/splits improves.
Partial fix for <rdar://problem/7635585>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114919 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts revision 114633. It was breaking llvm-gcc-i386-linux-selfhost.
It seems there is a downstream bug that is exposed by
-cgp-critical-edge-splitting=0. When that bug is fixed, this patch can go back
in.
Note that the changes to tailcallfp2.ll are not reverted. They were good are
required.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114859 91177308-0d34-0410-b5e6-96231b3b80d8
Splitting critical edges at the merge point only addressed part of the issue; it is also possible for non-post-domination
to occur when the path from the load to the merge has branches in it. Unfortunately, full anticipation analysis is
time-consuming, so for now approximate it. This is strictly more conservative than real anticipation, so we will miss
some cases that real PRE would allow, but we also no longer insert loads into paths where they didn't exist before. :-)
This is a very slight net positive on SPEC for me (0.5% on average). Most of the benchmarks are largely unaffected, but
when it pays off it pays off decently: 181.mcf improves by 4.5% on my machine.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114785 91177308-0d34-0410-b5e6-96231b3b80d8
"external" even when doing lazy bitcode loading. This was broken because
a function that is not materialized fails the !isDeclaration() test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114666 91177308-0d34-0410-b5e6-96231b3b80d8
truncates are free only in the case where the extended type is legal but the
load type is not. If both types are illegal, such as when they are too big,
the load may not be legalized into an extended load.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114568 91177308-0d34-0410-b5e6-96231b3b80d8
load when the type of the load is not legal, even if truncates are not free.
The load is going to be legalized to an extending load anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114488 91177308-0d34-0410-b5e6-96231b3b80d8
walking the asm arguments once and stashing their Values. This is
wrong because the same memory location can be in the list twice, and
if the first one has a sunkaddr substituted, the stashed value for the
second one will be wrong (use-after-free). PR 8154.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114104 91177308-0d34-0410-b5e6-96231b3b80d8
deleted. Fix this by doing the copyValue's before we delete stuff!
The testcase only repros the problem on my system with valgrind.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113820 91177308-0d34-0410-b5e6-96231b3b80d8
to expose greater opportunities for store narrowing in codegen. This patch fixes a potential
infinite loop in instcombine caused by one of the introduced transforms being overly aggressive.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113763 91177308-0d34-0410-b5e6-96231b3b80d8
This can result in increased opportunities for store narrowing in code generation. Update a number of
tests for this change. This fixes <rdar://problem/8285027>.
Additionally, because this inverts the order of ors and ands, some patterns for optimizing or-of-and-of-or
no longer fire in instances where they did originally. Add a simple transform which recaptures most of these
opportunities: if we have an or-of-constant-or and have failed to fold away the inner or, commute the order
of the two ors, to give the non-constant or a chance for simplification instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113679 91177308-0d34-0410-b5e6-96231b3b80d8
not unrolling loops that contain calls that would be better off getting inlined. This mostly
comes up when an interleaved devirtualization pass has devirtualized a call which the inliner
will inline on a future pass. Thus, rather than blocking all loops containing calls, add
a metric for "inline candidate calls" and block loops containing those instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113535 91177308-0d34-0410-b5e6-96231b3b80d8
unrolling threshold to the optimize-for-size threshold. Basically, for loops containing calls, unrolling
can still be profitable as long as the loop is REALLY small.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113439 91177308-0d34-0410-b5e6-96231b3b80d8
The threshold value of 50 is arbitrary, and I chose it simply by analogy to the inlining thresholds, where
the baseline unrolling threshold is slightly smaller than the baseline inlining threshold. This could
undoubtedly use some tuning.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113306 91177308-0d34-0410-b5e6-96231b3b80d8
turning (fptrunc (sqrt (fpext x))) -> (sqrtf x) is great, but we have
to delete the original sqrt as well. Not doing so causes us to do
two sqrt's when building with -fmath-errno (the default on linux).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113260 91177308-0d34-0410-b5e6-96231b3b80d8
Switch from isWeakForLinker to mayBeOverridden which is more accurate.
Add more statistics and debugging info. Add comments. Move static function
outside anonymous namespace.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113190 91177308-0d34-0410-b5e6-96231b3b80d8
in the duplicated block instead of duplicating them.
Duplicating them into the end of the loop and the preheader
means that we got a phi node in the header of the loop,
which prevented LICM from hoisting them. GVN would
usually come around later and merge the duplicated
instructions so we'd get reasonable output... except that
anything dependent on the shoulda-been-hoisted value can't
be hoisted. In PR5319 (which this fixes), a memory value
didn't get promoted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113134 91177308-0d34-0410-b5e6-96231b3b80d8
Loop::hasLoopInvariantOperands method. Remove
a useless and confusing Loop::isLoopInvariant(Instruction)
method, which didn't do what you thought it did.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113133 91177308-0d34-0410-b5e6-96231b3b80d8
strong functions first to make sure they're the canonical definitions and then
do a second pass looking only for weak functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113104 91177308-0d34-0410-b5e6-96231b3b80d8
location is being re-stored to the memory location. We would get
a dangling pointer from the SSAUpdate data structure and miss a
use. This fixes PR8068
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113042 91177308-0d34-0410-b5e6-96231b3b80d8
I'm sure it is harmless. Original commit message:
If PrototypeValue is erased in the middle of using the SSAUpdator
then the SSAUpdator may access freed memory. Instead, simply pass
in the type and name explicitly, which is all that was used anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112810 91177308-0d34-0410-b5e6-96231b3b80d8
then the SSAUpdator may access freed memory. Instead, simply pass
in the type and name explicitly, which is all that was used anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112699 91177308-0d34-0410-b5e6-96231b3b80d8
on llvmdev: SRoA is introducing MMX datatypes like <1 x i64>,
which then cause random problems because the X86 backend is
producing mmx stuff without inserting proper emms calls.
In the short term, force off MMX datatypes. In the long term,
the X86 backend should not select generic vector types to MMX
registers. This is being worked on, but won't be done in time
for 2.8. rdar://8380055
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112696 91177308-0d34-0410-b5e6-96231b3b80d8