(yet) recognize the 'trap' mnemonic, so we use .short/.long to emit the
opcode directly. On Darwin, however, we do want the mnemonic for more
readable assembly code and better disassembly.
Adjust the .td file to use the 'trap' mnemonic and handle using the binutils
workaround in the assembly printer. Also tweak the formatting of the opcode
values to make them consistent between the MC printer and the old printer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114679 91177308-0d34-0410-b5e6-96231b3b80d8
new VariantKind to the MCSymbolExpr seems like overkill, but I'm not sure
there's a more straightforward way to get the printing difference captured.
(i.e., x86 uses @PLT, ARM uses (PLT)).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114613 91177308-0d34-0410-b5e6-96231b3b80d8
CombineTo to avoid putting the result on the worklist. I don't think it makes
much difference for now, but it might help someday as we add more DAG
combine optimizations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114595 91177308-0d34-0410-b5e6-96231b3b80d8
of those. Refactor to share code for handling BUILD_VECTOR(VMOVRRD).
I don't have a testcase that exercises this, but it seems like an obvious
good thing to do.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114589 91177308-0d34-0410-b5e6-96231b3b80d8
ARM cross-compiler on x86, because the MMO size did not match the type size.
This fixes the MMO size and also the size of the stack object to match the
type size.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114554 91177308-0d34-0410-b5e6-96231b3b80d8
x86-32: 32-bit calls were named "call" not "calll". 64-bit calls were correctly
named "callq", so this only impacted x86-32.
This fixes rdar://8456370 - llvm-mc rejects 'calll'
This also exposes that mingw/64 is generating a 32-bit call instead of a 64-bit call,
I will file a bugzilla.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114534 91177308-0d34-0410-b5e6-96231b3b80d8
-This line, and those below, will be ignored--
M test/MC/AsmParser/X86/x86_instructions.s
M lib/Target/X86/AsmParser/X86AsmParser.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114527 91177308-0d34-0410-b5e6-96231b3b80d8
by having X86DAGToDAGISel::SelectAddr get passed in the parent node
of the operand match (the load/store/atomic op) and having it get
the address space from that, instead of having special FS/GS addr
mode operations that require duplicating the entire instruction set
to support.
This makes FS and GS relative accesses *far* more predictable and
work much better. It also simplifies the X86 backend a bit, more
to come.
There is still a pending issue with nodes like ISD::PREFETCH and
X86ISD::FLD, which really should be MemSDNode's but aren't.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114491 91177308-0d34-0410-b5e6-96231b3b80d8
the predicate to discover the number of sign bits. Enhance X86's target lowering to provide
a useful response to this query.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114473 91177308-0d34-0410-b5e6-96231b3b80d8
passed the root of the match, even though only a few patterns
actually needed this (one in X86, several in ARM [which should
be refactored anyway], and some in CellSPU that I don't feel
like detangling). Instead of requiring all ComplexPatterns to
take the dead root, have targets opt into getting the root by
putting SDNPWantRoot on the ComplexPattern.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114471 91177308-0d34-0410-b5e6-96231b3b80d8
(sbbl x, x) sets the registers to 0 or ~0. Combined with two's complement arithmetic, we can fold
the intermediate AND and the ADD into a single SUB.
This fixes <rdar://problem/8449754>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114460 91177308-0d34-0410-b5e6-96231b3b80d8