we are only interested in the defs when discovering interferences.
This is a 28% speedup running StrongPHIElimination on 403.gcc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122596 91177308-0d34-0410-b5e6-96231b3b80d8
when running without the verifier, and I have not yet checked them to see if
the new results are still correct. There are more verifier failures, but they
all seem to be additional occurrences of verifier failures that occur with the
existing PHIElimination pass. There are a few obvious issues with the code:
1) It doesn't properly update the register equivalence classes during copy
insertion, and instead recomputes them before merging live intervals and
renaming registers. I wanted to keep this first patch simple for debugging
purposes, but it shouldn't be very hard to do this.
2) It doesn't mix the renaming and live interval merging with the copy insertion
process, which leads to a lot of virtual register churn. Virtual registers and
live intervals are created, only to later be merged into others. The code should
be smarter and only create a new virtual register if there is no existing
register in the same congruence class.
3) In one place the code uses a DenseMap per basic block, which is unnecessary
heap allocation. There should be an inline storage version of DenseMap.
I did a quick compile-time test of running llc on 403.gcc with and without
StrongPHIElimination. It is slightly slower with StrongPHIElimination, because
the small decrease in the coalescer runtime can't beat the increase in phi
elimination runtime. Perhaps fixing the above performance issues will narrow
the gap.
I also haven't yet run any tests of the quality of the generated code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122582 91177308-0d34-0410-b5e6-96231b3b80d8
valno verification. The "Different value live out of predecessor" check is
incorrect in the case of phi-def valnos, so just skip that check for phi-def
valnos and instead check that all of the valnos for predecessors have phi-kill.
Fixes PR8863.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122581 91177308-0d34-0410-b5e6-96231b3b80d8
DAG scheduling during isel. Most new functionality is currently
guarded by -enable-sched-cycles and -enable-sched-hazard.
Added InstrItineraryData::IssueWidth field, currently derived from
ARM itineraries, but could be initialized differently on other targets.
Added ScheduleHazardRecognizer::MaxLookAhead to indicate whether it is
active, and if so how many cycles of state it holds.
Added SchedulingPriorityQueue::HasReadyFilter to allowing gating entry
into the scheduler's available queue.
ScoreboardHazardRecognizer now accesses the ScheduleDAG in order to
get information about it's SUnits, provides RecedeCycle for bottom-up
scheduling, correctly computes scoreboard depth, tracks IssueCount, and
considers potential stall cycles when checking for hazards.
ScheduleDAGRRList now models machine cycles and hazards (under
flags). It tracks MinAvailableCycle, drives the hazard recognizer and
priority queue's ready filter, manages a new PendingQueue, properly
accounts for stall cycles, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122541 91177308-0d34-0410-b5e6-96231b3b80d8
In the bottom-up selection DAG scheduling, handle two-address
instructions that read/write unspillable registers. Treat
the entire chain of two-address nodes as a single live range.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122472 91177308-0d34-0410-b5e6-96231b3b80d8
loads properly. We miscompiled the testcase into:
_test: ## @test
movl $128, (%rdi)
movzbl 1(%rdi), %eax
ret
Now we get a proper:
_test: ## @test
movl $128, (%rdi)
movsbl (%rdi), %eax
movzbl %ah, %eax
ret
This fixes PR8757.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122392 91177308-0d34-0410-b5e6-96231b3b80d8
the shift type was needed one place, the shift count
type another. The transform in 123555 had the same
problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122366 91177308-0d34-0410-b5e6-96231b3b80d8
count operand. These should be the same but apparently are
not always, and this is cleaner anyway. This improves the
code in an existing test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122354 91177308-0d34-0410-b5e6-96231b3b80d8
of the problems with my last attempt were in the updating of LiveIntervals
rather than the coalescing itself. Therefore, I decided to get that right first
by essentially reimplementing the existing PHIElimination using LiveIntervals.
It works correctly, with only a few tests failing (which may not be legitimate
failures) and no new verifier failures (at least as far as I can tell, I didn't
count the number per file).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122321 91177308-0d34-0410-b5e6-96231b3b80d8
Edge bundles is an annotation on the CFG that turns it into a bipartite directed
graph where each basic block is connected to an outgoing and an ingoing bundle.
These bundles are useful for identifying regions of the CFG for live range
splitting.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122301 91177308-0d34-0410-b5e6-96231b3b80d8
ARM (and other 32-bit-only) targets support for i8 and i16 overflow
multiplies. The generated code isn't great, but this at least fixes
CodeGen/Generic/overflow.ll when running on ARM hosts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122221 91177308-0d34-0410-b5e6-96231b3b80d8
Imagine we see:
EFLAGS = inst1
EFLAGS = inst2 FLAGS
gpr = inst3 EFLAGS
Previously, we would refuse to schedule inst2 because it clobbers
the EFLAGS of the predecessor. However, it also uses the EFLAGS
of the predecessor, so it is safe to emit. SDep edges ensure that
the right order happens already anyway.
This fixes 2 testsuite crashes with the X86 patch I'm going to
commit next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122211 91177308-0d34-0410-b5e6-96231b3b80d8