This patch teaches how to fold a shuffle according to rule:
shuffle (shuffle (x, undef, M0), undef, M1) -> shuffle(x, undef, M2)
We do this only if the resulting mask M2 is legal; this is to avoid introducing
illegal shuffles that are potentially expanded into a sub-optimal sequence
of target specific dag nodes.
This patch has the advantage of being target independent, since it works on ISD
nodes. Therefore, all targets (not only x86) can take advantage of this rule.
The idea behind this patch is that most shuffle pairs can be safely combined
before we run the legalizer on vector operations. This allows us to
combine/simplify dag nodes earlier in the process and not only immediately
before instruction selection stage.
That said. This patch is not meant to replace any existing target specific
combine rules; backends might still introduce new shuffles during legalization
stage. Also, this rule is very simple and avoids to aggressively optimize
shuffles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212539 91177308-0d34-0410-b5e6-96231b3b80d8
aggressively from the x86 shuffle lowering to the generic SDAG vector
shuffle formation code.
This code already tried to fold away shuffles of splats! It just had
lots of bugs and couldn't handle the case my new x86 shuffle lowering
needed.
First, it failed to correctly compute whether N2 was undef because it
pre-computed this, then did transformations which could *make* N2 undef,
then failed to ever re-consider the precomputed state.
Second, it didn't look through bitcasts at all, even in the safe cases
where they are just element-type bitcasts with no change to the number
of elements.
Third, it didn't handle all-zero bit casts nicely the way my code in the
x86 side of things did, which is essential to getting good zext-shuffle
lowerings.
But all of these are generic. I just ported the code down to this layer
and fixed the surrounding bugs. Tests exercising this in the x86 backend
still pass and some silly code in widen_cast-6.ll gets better. I updated
that test to be a bit more precise but it's still pretty unclear what
the value of the test is in this day and age.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212517 91177308-0d34-0410-b5e6-96231b3b80d8
around the handling of UNDEF lanes in boolean vector content analysis.
The code before my changes here also failed to check for non-constant
splats in a buildvector. I have no idea how to trigger this, I just
spotted by inspection when trying to understand the code. It seems
extremely unlikely to be worth the trouble to teach the only caller of
this code (DAG combining setcc patterns) how to cleverly handle undef
lanes, so I've just commented more thoroughly that we're giving up
there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212515 91177308-0d34-0410-b5e6-96231b3b80d8
nodes about whether they are splats. This is factored out and improved
from r212324 which got reverted as it was far too aggressive. The new
API should help more conservatively handle buildvectors that are
a mixture of splatted and undef values.
No functionality change at this point. The hope is to slowly
re-introduce the undef-tolerant optimization of splats, but each time
being forced to make a concious decision about how to handle the undefs
in a way that doesn't lead to contradicting assumptions about the
collapsed value.
Hal has pointed out in discussions that this may not end up being the
desired API and instead it may be more convenient to get a mask of the
undef elements or something similar. I'm starting simple and will expand
the API as I adapt actual callers and see exactly what they need.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212514 91177308-0d34-0410-b5e6-96231b3b80d8
lanes in vector splats.
The core problem here is that undef lanes can't *unilaterally* be
considered to contribute to splats. Their handling needs to be more
cautious. There is also a reported failure of the nightly testers
(thanks Tobias!) that may well stem from the same core issue. I'm going
to fix this theoretical issue, factor the APIs a bit better, and then
verify that I don't see anything bad with Tobias's reduction from the
test suite before recommitting.
Original commit message for r212324:
[x86] Generalize BuildVectorSDNode::getConstantSplatValue to work for
any constant, constant FP, or undef splat and to tolerate any undef
lanes in a splat, then replace all uses of isSplatVector in X86's
lowering with it.
This fixes issues where undef lanes in an otherwise splat vector would
prevent the splat logic from firing. It is a touch more awkward to use
this interface, but it is much more accurate. Suggestions for better
interface structuring welcome.
With this fix, the code generated with the widening legalization
strategy for widen_cast-4.ll is *dramatically* improved as the special
lowering strategies for a v16i8 SRA kick in even though the high lanes
are undef.
We also get a slightly different choice for broadcasting an aligned
memory location, and use vpshufd instead of vbroadcastss. This looks
like a minor win for pipelining and domain crossing, but a minor loss
for the number of micro-ops. I suspect its a wash, but folks can
easily tweak the lowering if they want.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212475 91177308-0d34-0410-b5e6-96231b3b80d8
any constant, constant FP, or undef splat and to tolerate any undef
lanes in a splat, then replace all uses of isSplatVector in X86's
lowering with it.
This fixes issues where undef lanes in an otherwise splat vector would
prevent the splat logic from firing. It is a touch more awkward to use
this interface, but it is much more accurate. Suggestions for better
interface structuring welcome.
With this fix, the code generated with the widening legalization
strategy for widen_cast-4.ll is *dramatically* improved as the special
lowering strategies for a v16i8 SRA kick in even though the high lanes
are undef.
We also get a slightly different choice for broadcasting an aligned
memory location, and use vpshufd instead of vbroadcastss. This looks
like a minor win for pipelining and domain crossing, but a minor loss
for the number of micro-ops. I suspect its a wash, but folks can easily
tweak the lowering if they want.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212324 91177308-0d34-0410-b5e6-96231b3b80d8
subtarget. This involved having the movt predicate take the current
function - since we care about size in instruction selection for
whether or not to use movw/movt take the function so we can check
the attributes. This required adding the current MachineFunction to
FastISel and propagating through.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212309 91177308-0d34-0410-b5e6-96231b3b80d8
The PowerPC 128-bit long double data type (ppcf128 in LLVM) is in fact a
pair of two doubles, where one is considered the "high" or
more-significant part, and the other is considered the "low" or
less-significant part. When a ppcf128 value is stored in memory or a
register pair, the high part always comes first, i.e. at the lower
memory address or in the lower-numbered register, and the low part
always comes second. This is true both on big-endian and little-endian
PowerPC systems. (Similar to how with a complex number, the real part
always comes first and the imaginary part second, no matter the byte
order of the system.)
This was implemented incorrectly for little-endian systems in LLVM.
This commit fixes three related issues:
- When printing an immediate ppcf128 constant to assembler output
in emitGlobalConstantFP, emit the high part first on both big-
and little-endian systems.
- When lowering a ppcf128 type to a pair of f64 types in SelectionDAG
(which is used e.g. when generating code to load an argument into a
register pair), use correct low/high part ordering on little-endian
systems.
- In a related issue, because lowering ppcf128 into a pair of f64 must
operate differently from lowering an int128 into a pair of i64,
bitcasts between ppcf128 and int128 must not be optimized away by the
DAG combiner on little-endian systems, but must effect a word-swap.
Reviewed by Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212274 91177308-0d34-0410-b5e6-96231b3b80d8
This operation was classified as a binary operation in the widening
logic for some reason (clearly, untested). It is in fact a unary
operation. Add a RUN line to a test to exercise this for x86.
Note that again the vector widening strategy doesn't regress anything
and in one case removes a totally unecessary instruction that we
couldn't avoid when promoting the element type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212257 91177308-0d34-0410-b5e6-96231b3b80d8
switches) into a switch, and sink them into a dispatch function that can
return the result rather than awkward variable setting with breaks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212166 91177308-0d34-0410-b5e6-96231b3b80d8
This doesn't add any information for methods in the VectorLegalizer
class that clearly take SDAG operations to legalize.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212157 91177308-0d34-0410-b5e6-96231b3b80d8
The argument list vector is never used after it has been passed to the
CallLoweringInfo and moving it to the CallLoweringInfo is cleaner and
pretty much as cheap as keeping a pointer to it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212135 91177308-0d34-0410-b5e6-96231b3b80d8
string_ostream is a safe and efficient string builder that combines opaque
stack storage with a built-in ostream interface.
small_string_ostream<bytes> additionally permits an explicit stack storage size
other than the default 128 bytes to be provided. Beyond that, storage is
transferred to the heap.
This convenient class can be used in most places an
std::string+raw_string_ostream pair or SmallString<>+raw_svector_ostream pair
would previously have been used, in order to guarantee consistent access
without byte truncation.
The patch also converts much of LLVM to use the new facility. These changes
include several probable bug fixes for truncated output, a programming error
that's no longer possible with the new interface.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211749 91177308-0d34-0410-b5e6-96231b3b80d8
We handle this by spilling the whole thing to the stack and doing the
insertion as a store.
PR19492. This happens in real code because the vectorizer creates v2i128 when AVX is enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211435 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
With this patch, range metadata can be added to call/invoke including
IntrinsicInst. Previously, it could only be added to load.
Rename computeKnownBitsLoad to computeKnownBitsFromRangeMetadata because
range metadata is not only used by load.
Update the language reference to reflect this change.
Test Plan:
Add several tests in range-2.ll to confirm the verifier is happy with
having range metadata on call/invoke.
Add two tests in AddOverFlow.ll to confirm annotating range metadata to
call/invoke can benefit InstCombine.
Reviewers: meheff, nlewycky, reames, hfinkel, eliben
Reviewed By: eliben
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4187
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211281 91177308-0d34-0410-b5e6-96231b3b80d8
It looks like there are two versions of LowerCallTo here: the
SelectionDAGBuilder one is designed to operate on LLVM IR, and the
TargetLowering one in the case where everything is at DAG level.
Previously, only the SelectionDAGBuilder variant could handle demoting
an impossible return to sret semantics (before delegating to the
TargetLowering version), but this functionality is also useful for
certain libcalls (e.g. 128-bit operations on 32-bit x86). So this
commit moves the sret handling down a level.
rdar://problem/17242889
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211155 91177308-0d34-0410-b5e6-96231b3b80d8
It's valid to use FP_TO_SINT when asking for a smaller type (e.g. all
"unsigned int16" values fit into a "signed int32"), but the reverse
isn't true.
Unfortunately, I'm not actually aware of any architecture with
asymmetric FP_TO_SINT and FP_TO_UINT handling and the logic happens to
work in the symmetric case, so I can't actually write a test for this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210986 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds a weak variant of the cmpxchg operation, as described
in C++11. A cmpxchg instruction with this modifier is permitted to
fail to store, even if the comparison indicated it should.
As a result, cmpxchg instructions must return a flag indicating
success in addition to their original iN value loaded. Thus, for
uniformity *all* cmpxchg instructions now return "{ iN, i1 }". The
second flag is 1 when the store succeeded.
At the DAG level, a new ATOMIC_CMP_SWAP_WITH_SUCCESS node has been
added as the natural representation for the new cmpxchg instructions.
It is a strong cmpxchg.
By default this gets Expanded to the existing ATOMIC_CMP_SWAP during
Legalization, so existing backends should see no change in behaviour.
If they wish to deal with the enhanced node instead, they can call
setOperationAction on it. Beware: as a node with 2 results, it cannot
be selected from TableGen.
Currently, no use is made of the extra information provided in this
patch. Test updates are almost entirely adapting the input IR to the
new scheme.
Summary for out of tree users:
------------------------------
+ Legacy Bitcode files are upgraded during read.
+ Legacy assembly IR files will be invalid.
+ Front-ends must adapt to different type for "cmpxchg".
+ Backends should be unaffected by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210903 91177308-0d34-0410-b5e6-96231b3b80d8
Add branch weights to branch instructions, so that the following passes can
optimize based on it (i.e. basic block ordering).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210863 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds MachineMemOperands to load and store instructions. This allows
the peephole optimizer to fold load instructions. Unfortunatelly the peephole
optimizer currently doesn't run at -O0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210858 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r210540, adds a testcase for the regression it
caused, and marks the R600 test it was supposed to fix as XFAIL.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210792 91177308-0d34-0410-b5e6-96231b3b80d8
The SelectionDAG bad a special case for ISD::SELECT_CC, where it would
allow targets to specify:
setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
to indicate that they wanted to expand ISD::SELECT_CC for all types.
This wasn't applied correctly everywhere, and it makes writing new
DAG patterns with ISD::SELECT_CC difficult.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210541 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds new target specific combine rules to identify horizontal
add/sub idioms from BUILD_VECTOR dag nodes.
This patch also teaches the DAGCombiner how to canonicalize sequences of
insert_vector_elt dag nodes according to the following rule:
(insert_vector_elt (insert_vector_elt A, I0), I1) ->
(insert_vecto_elt (insert_vector_elt A, I1), I0)
This new canonicalization rule only triggers if the inner insert_vector
dag node has exactly one use; also, both indices must be known constants,
and I1 < I0.
This last rule made it possible to write a simpler algorithm to identify
horizontal add/sub patterns because now we don't have to worry about the
ordering of insert_vector_elt dag nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210477 91177308-0d34-0410-b5e6-96231b3b80d8
This patch modifies SelectionDAGBuilder to construct SDNodes with associated
NoSignedWrap, NoUnsignedWrap and Exact flags coming from IR BinaryOperator
instructions.
Added a new SDNode type called 'BinaryWithFlagsSDNode' to allow accessing
nsw/nuw/exact flags during codegen.
Patch by Marcello Maggioni.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210467 91177308-0d34-0410-b5e6-96231b3b80d8
DAG cycle detection is only enabled with ENABLE_EXPENSIVE_CHECKS. However we
can run it just before we would crash in order to provide more informative
diagnostics.
Now in addition to the "Overran sorted position" message we also get the Node
printed if a cycle was detected.
Tested by building several configs: Debug+Assert, Debug+Assert+Check (this is
ENABLE_EXPENSIVE_CHECKS), Release+Assert and Release. Also tried that the
AssignTopologicalOrder assert produces the expected results.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209977 91177308-0d34-0410-b5e6-96231b3b80d8
Pass the DAG down to checkForCycles from all callers where we have it. This
allows target-specific nodes to be printed properly.
Also print some missing newlines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209976 91177308-0d34-0410-b5e6-96231b3b80d8
This patch teaches the backend how to simplify/canonicalize dag node
sequences normally introduced by the backend when promoting certain dag nodes
with illegal vector type.
This patch adds two new combine rules:
1) fold (shuffle (bitcast (BINOP A, B)), Undef, <Mask>) ->
(shuffle (BINOP (bitcast A), (bitcast B)), Undef, <Mask>)
2) fold (BINOP (shuffle (A, Undef, <Mask>)), (shuffle (B, Undef, <Mask>))) ->
(shuffle (BINOP A, B), Undef, <Mask>).
Both rules are only triggered on the type-legalized DAG.
In particular, rule 1. is a target specific combine rule that attempts
to sink a bitconvert into the operands of a binary operation.
Rule 2. is a target independet rule that attempts to move a shuffle
immediately after a binary operation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209930 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
If both vector args to vselect are concat_vectors and the condition is
constant and picks half a vector from each argument, convert the vselect
into a concat_vectors.
Added a test.
The ConvertSelectToConcatVector is assuming it doesn't get vselects with
arguments of, for example, <undef, undef, true, true>. Those get taken
care of in the checks above its call.
Reviewers: nadav, delena, grosbach, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3916
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209929 91177308-0d34-0410-b5e6-96231b3b80d8
Unordered is strictly weaker than monotonic, so if the latter doesn't have any
barriers then the former certainly shouldn't.
rdar://problem/16548260
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209901 91177308-0d34-0410-b5e6-96231b3b80d8
An address only use of an extract element of a load can be simplified to a
load. Without this the result of the extract element is spilled to the
stack so that an address is available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209788 91177308-0d34-0410-b5e6-96231b3b80d8
No test because no in-tree targets change the bitwidth of the
setcc type depending on the bitwidth of the compared type.
Patch by Ke Bai
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209771 91177308-0d34-0410-b5e6-96231b3b80d8