pass. This is designed to achieve one of the important optimizations
that the old code placement pass did, but more simply.
This is a somewhat rough and *very* conservative version of the
transform. We could get a lot fancier here if there are profitable cases
to do so. In particular, this only looks for a single pattern, it
insists that the loop backedge being rotated away is the last backedge
in the chain, and it doesn't provide any means of doing better in-loop
placement due to the rotation. However, it appears that it will handle
the important loops I am finding in the LLVM test suite.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145158 91177308-0d34-0410-b5e6-96231b3b80d8
was returning incorrect values in rare cases, and incorrectly marking
exact conversions as inexact in some more common cases. Fixes PR11406, and a
missed optimization in test/CodeGen/X86/fp-stack-O0.ll.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145141 91177308-0d34-0410-b5e6-96231b3b80d8
I don't see how the project is using LLVM and we really can't list every user of
the clang analyzer. Sorry.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145137 91177308-0d34-0410-b5e6-96231b3b80d8
tablegen patterns for scalar FMA4 operations and intrinsic. Also
add tests for vfmaddsd.
Patch by Jan Sjodin
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145133 91177308-0d34-0410-b5e6-96231b3b80d8
need lots of fanciness around retaining a reference to a Chain's slot in
the BlockToChain map, but that's all gone now. We can just go directly
to allocating the new chain (which will update the mapping for us) and
using it.
Somewhat gross mechanically generated test case replicates the issue
Duncan spotted when actually testing this out.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145120 91177308-0d34-0410-b5e6-96231b3b80d8
conflicts, we should only be adding the first block of the chain to the
list, lest we try to merge into the middle of that chain. Most of the
places we were doing this we already happened to be looking at the first
block, but there is no reason to assume that, and in some cases it was
clearly wrong.
I've added a couple of tests here. One already worked, but I like having
an explicit test for it. The other is reduced from a test case Duncan
reduced for me and used to crash. Now it is handled correctly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145119 91177308-0d34-0410-b5e6-96231b3b80d8
- lower unaligned loads/stores.
- encode the size operand of instructions INS and EXT.
- emit relocation information needed for JAL (jump-and-link).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145113 91177308-0d34-0410-b5e6-96231b3b80d8
and positive: positive, because it could be directly computed to be positive;
negative, because the nsw flags means it is either negative or undefined (the
multiplication always overflowed).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145104 91177308-0d34-0410-b5e6-96231b3b80d8
Before:
movabsq $4294967296, %rax ## encoding: [0x48,0xb8,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00]
testq %rax, %rdi ## encoding: [0x48,0x85,0xf8]
jne LBB0_2 ## encoding: [0x75,A]
After:
btq $32, %rdi ## encoding: [0x48,0x0f,0xba,0xe7,0x20]
jb LBB0_2 ## encoding: [0x72,A]
btq is usually slower than testq because it doesn't fuse with the jump, but here we're better off
saving one register and a giant movabsq.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145103 91177308-0d34-0410-b5e6-96231b3b80d8
further. This invariant just wasn't going to work in the face of
unanalyzable branches; we need to be resillient to the phenomenon of
chains poking into a loop and poking out of a loop. In fact, we already
were, we just needed to not assert on it.
This was found during a bootstrap with block placement turned on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145100 91177308-0d34-0410-b5e6-96231b3b80d8
VSHUFPS/VSHUFPD instructions while lowering VECTOR_SHUFFLE node. I check a commuted VSHUFP mask.
The patch was reviewed by Bruno.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145099 91177308-0d34-0410-b5e6-96231b3b80d8
successors, they just are all landing pad successors. We handle this the
same way as no successors. Comments attached for the next person to wade
through here and another lovely test case courtesy of Benjamin Kramer's
bugpoint reduction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145098 91177308-0d34-0410-b5e6-96231b3b80d8
This was a bug in keeping track of the available domains when merging
domain values.
The wrong domain mask caused ExecutionDepsFix to try to move VANDPSYrr
to the integer domain which is only available in AVX2.
Also add an assertion to catch future attempts at emitting AVX2
instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145096 91177308-0d34-0410-b5e6-96231b3b80d8
reversed in the function's original ordering, and we happened to
encounter it while handling an outer unnatural CFG structure.
Thanks to the test case reduced from GCC's source by Benjamin Kramer.
This may also fix a crasher in gzip that Duncan reduced for me, but
I haven't yet gotten to testing that one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145094 91177308-0d34-0410-b5e6-96231b3b80d8
updateTerminator code didn't correctly handle EH terminators in one very
specific case. AnalyzeBranch would find no terminator instruction, and
so the fallback in updateTerminator is to assume fallthrough. This is
correct, but the destination of the fallthrough was assumed to be the
first successor.
This is *almost always* true, but in certain cases the loop
transformations will cause the landing pad to be the first successor!
Instead of this brittle logic, actually look through the successors for
a non-landing-pad accessor, and to assert if more than one is found.
This will hopefully fix some (if not all) of the self host miscompiles
with block placement. Thanks to Benjamin Kramer for reporting, Nick
Lewycky for an initial stab at a reduction, and Duncan for endless
advice on EH (which I know nothing about) as well as reviewing the
actual fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145062 91177308-0d34-0410-b5e6-96231b3b80d8
dropping weights on the floor for invokes. This was impeding my writing
further test cases for invoke when interacting with probabilities and
block placement.
No test case as there doesn't appear to be a way to test this stuff. =/
Suggestions for a test case of course welcome. I hope to be able to add
test cases that indirectly cover this eventually by adding probabilities
to the exceptional edge and reordering blocks as a result.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145060 91177308-0d34-0410-b5e6-96231b3b80d8
This was put in because in a certain version of DragonFlyBSD stat(2) lied about the
size of some files. This was fixed a long time ago so we can remove the workaround.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145059 91177308-0d34-0410-b5e6-96231b3b80d8