When LiveIntervals is tracking fixed interference in regunits, make sure
to update those intervals as well. Currently guarded by -live-regunits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158766 91177308-0d34-0410-b5e6-96231b3b80d8
ensureAlignment() in MachineFunction). Also, drop setMaxAlignment() in
favor of this new function. This creates a main entry point to setting
MaxAlignment, which will be helpful for future work. No functionality
change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158758 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds DAG combines to form FMAs from pairs of FADD + FMUL or
FSUB + FMUL. The combines are performed when:
(a) Either
AllowExcessFPPrecision option (-enable-excess-fp-precision for llc)
OR
UnsafeFPMath option (-enable-unsafe-fp-math)
are set, and
(b) TargetLoweringInfo::isFMAFasterThanMulAndAdd(VT) is true for the type of
the FADD/FSUB, and
(c) The FMUL only has one user (the FADD/FSUB).
If your target has fast FMA instructions you can make use of these combines by
overriding TargetLoweringInfo::isFMAFasterThanMulAndAdd(VT) to return true for
types supported by your FMA instruction, and adding patterns to match ISD::FMA
to your FMA instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158757 91177308-0d34-0410-b5e6-96231b3b80d8
The PPC::EXTSW instruction preserves the low 32 bits of its input, just
like some of the x86 instructions. Use it to reduce register pressure
when the low 32 bits have multiple uses.
This requires a small change to PeepholeOptimizer since EXTSW takes a
64-bit input register.
This is related to PR5997.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158743 91177308-0d34-0410-b5e6-96231b3b80d8
TargetLoweringObjectFileELF. Use this to support it on X86. Unlike ARM,
on X86 it is not easy to find out if .init_array should be used or not, so
the decision is made via TargetOptions and defaults to off.
Add a command line option to llc that enables it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158692 91177308-0d34-0410-b5e6-96231b3b80d8
This patch changes the type used to hold the FU bitset from unsigned to uint64_t.
This will be needed for some upcoming PowerPC itineraries.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158679 91177308-0d34-0410-b5e6-96231b3b80d8
Calling checkRegMaskInterference(VirtReg) checks if VirtReg crosses any
regmask operands, regardless of the registers they clobber.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158563 91177308-0d34-0410-b5e6-96231b3b80d8
We only do very limited physreg coalescing now, but we still merge
virtual registers into reserved registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158526 91177308-0d34-0410-b5e6-96231b3b80d8
For store->load dependencies that may alias, we should always use
TrueMemOrderLatency, which may eventually become a subtarget hook. In
effect, we should guarantee at least TrueMemOrderLatency on at least
one DAG path from a store to a may-alias load.
This should fix the standard mode as well as -enable-aa-sched-mi".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158380 91177308-0d34-0410-b5e6-96231b3b80d8
The LiveRegMatrix represents the live range of assigned virtual
registers in a Live interval union per register unit. This is not
fundamentally different from the interference tracking in RegAllocBase
that both RABasic and RAGreedy use.
The important differences are:
- LiveRegMatrix tracks interference per register unit instead of per
physical register. This makes interference checks cheaper and
assignments slightly more expensive. For example, the ARM D7 reigster
has 24 aliases, so we would check 24 physregs before assigning to one.
With unit-based interference, we check 2 units before assigning to 2
units.
- LiveRegMatrix caches regmask interference checks. That is currently
duplicated functionality in RABasic and RAGreedy.
- LiveRegMatrix is a pass which makes it possible to insert
target-dependent passes between register allocation and rewriting.
Such passes could tweak the register assignments with interference
checking support from LiveRegMatrix.
Eventually, RABasic and RAGreedy will be switched to LiveRegMatrix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158255 91177308-0d34-0410-b5e6-96231b3b80d8
This deduplicates some code from the optimizing register allocators, and
it means that it is now possible to change the register allocators'
solutions simply by editing the VirtRegMap between the register
allocator pass and the rewriter.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158249 91177308-0d34-0410-b5e6-96231b3b80d8
OK, not really. We don't want to reintroduce the old rewriter hacks.
This patch extracts virtual register rewriting as a separate pass that
runs after the register allocator. This is possible now that
CodeGen/Passes.cpp can configure the full optimizing register allocator
pipeline.
The rewriter pass uses register assignments in VirtRegMap to rewrite
virtual registers to physical registers, and it inserts kill flags based
on live intervals.
These finalization steps are the same for the optimizing register
allocators: RABasic, RAGreedy, and PBQP.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158244 91177308-0d34-0410-b5e6-96231b3b80d8
Bulk move of TargetInstrInfo implementation into
TargetInstrInfoImpl. This is dirty because the code isn't part of
TargetInstrInfoImpl class, nor should it be, because the methods are
not target hooks. However, it's the current mechanism for keeping
libTarget useful outside the backend. You'll get a not-so-nice link
error if you invoke a TargetInstrInfo method that depends on CodeGen.
The TargetInstrInfoImpl class should probably be removed since it
doesn't really solve this problem.
To really fix this, we probably need separate interfaces for the
CodeGen/nonCodeGen sides of TargetInstrInfo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158212 91177308-0d34-0410-b5e6-96231b3b80d8
The commit is intended to fix rdar://11540023.
It is implemented as part of peephole optimization. We can actually implement
this in the SelectionDAG lowering phase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158122 91177308-0d34-0410-b5e6-96231b3b80d8
Bundles should be treated as one atomic transaction when checking
liveness. That is how the register allocator (and VLIW targets) treats
bundles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158116 91177308-0d34-0410-b5e6-96231b3b80d8
LLVM is now -Wunused-private-field clean except for
- lib/MC/MCDisassembler/Disassembler.h. Not sure why it keeps all those unaccessible fields.
- gtest.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158096 91177308-0d34-0410-b5e6-96231b3b80d8
There are some that I didn't remove this round because they looked like
obvious stubs. There are dead variables in gtest too, they should be
fixed upstream.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158090 91177308-0d34-0410-b5e6-96231b3b80d8
Remat has been stable for years, and it isn't done by
LiveIntervalAnalysis any longer. (See LiveRangeEdit).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158079 91177308-0d34-0410-b5e6-96231b3b80d8
Soon we'll be making LiveIntervalUnions for register units as well.
This was the only place using the RepReg member, so just remove it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158038 91177308-0d34-0410-b5e6-96231b3b80d8
Don't print out the register number and spill weight, making the TRI
argument unnecessary.
This allows callers to interpret the reg field. It can currently be a
virtual register, a physical register, a spill slot, or a register unit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158031 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of computing a live interval per physreg, LiveIntervals can
compute live intervals per register unit. This makes impossible the
confusing situation where aliasing registers could have overlapping live
intervals. It should also make fixed interferernce checking cheaper
since registers have fewer register units than aliases.
Live intervals for regunits are computed on demand, using MRI use-def
chains and the new LiveRangeCalc class. Only regunits live in to ABI
blocks are precomputed during LiveIntervals::runOnMachineFunction().
The regunit liveness computations don't depend on LiveVariables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158029 91177308-0d34-0410-b5e6-96231b3b80d8
expression (a * b + c) that can be implemented as a fused multiply-add (fma)
if the target determines that this will be more efficient. This intrinsic
will be used to implement FP_CONTRACT support and an aggressive FMA formation
mode.
If your target has a fast FMA instruction you should override the
isFMAFasterThanMulAndAdd method in TargetLowering to return true.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158014 91177308-0d34-0410-b5e6-96231b3b80d8
This allows a subtarget to explicitly specify the issue width and
other properties without providing pipeline stage details for every
instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157979 91177308-0d34-0410-b5e6-96231b3b80d8