GCC 4.8 detected a signed compare [-Wsign-compare]. Add a cast for the
destination index. Add an assert to catch a potential overflow however unlikely
it may be.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213878 91177308-0d34-0410-b5e6-96231b3b80d8
Quite a bit of cruft had accumulated as we realised the various different cases
it had to handle and squeezed them in where possible. This refactoring mostly
flattens the logic and special-cases. The result is slightly longer, but I
think clearer.
Should be no functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213867 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds scoped noalias metadata. The primary motivations for this
feature are:
1. To preserve noalias function attribute information when inlining
2. To provide the ability to model block-scope C99 restrict pointers
Neither of these two abilities are added here, only the necessary
infrastructure. In fact, there should be no change to existing functionality,
only the addition of new features. The logic that converts noalias function
parameters into this metadata during inlining will come in a follow-up commit.
What is added here is the ability to generally specify noalias memory-access
sets. Regarding the metadata, alias-analysis scopes are defined similar to TBAA
nodes:
!scope0 = metadata !{ metadata !"scope of foo()" }
!scope1 = metadata !{ metadata !"scope 1", metadata !scope0 }
!scope2 = metadata !{ metadata !"scope 2", metadata !scope0 }
!scope3 = metadata !{ metadata !"scope 2.1", metadata !scope2 }
!scope4 = metadata !{ metadata !"scope 2.2", metadata !scope2 }
Loads and stores can be tagged with an alias-analysis scope, and also, with a
noalias tag for a specific scope:
... = load %ptr1, !alias.scope !{ !scope1 }
... = load %ptr2, !alias.scope !{ !scope1, !scope2 }, !noalias !{ !scope1 }
When evaluating an aliasing query, if one of the instructions is associated
with an alias.scope id that is identical to the noalias scope associated with
the other instruction, or is a descendant (in the scope hierarchy) of the
noalias scope associated with the other instruction, then the two memory
accesses are assumed not to alias.
Note that is the first element of the scope metadata is a string, then it can
be combined accross functions and translation units. The string can be replaced
by a self-reference to create globally unqiue scope identifiers.
[Note: This overview is slightly stylized, since the metadata nodes really need
to just be numbers (!0 instead of !scope0), and the scope lists are also global
unnamed metadata.]
Existing noalias metadata in a callee is "cloned" for use by the inlined code.
This is necessary because the aliasing scopes are unique to each call site
(because of possible control dependencies on the aliasing properties). For
example, consider a function: foo(noalias a, noalias b) { *a = *b; } that gets
inlined into bar() { ... if (...) foo(a1, b1); ... if (...) foo(a2, b2); } --
now just because we know that a1 does not alias with b1 at the first call site,
and a2 does not alias with b2 at the second call site, we cannot let inlining
these functons have the metadata imply that a1 does not alias with b2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213864 91177308-0d34-0410-b5e6-96231b3b80d8
truncstores to support EVTs and return expand for non-simple ones.
This makes them more consistent with the isLegal... query style methods
and makes using them simpler in many scenarios.
No functionality actually changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213860 91177308-0d34-0410-b5e6-96231b3b80d8
In order to enable the preservation of noalias function parameter information
after inlining, and the representation of block-level __restrict__ pointer
information (etc.), additional kinds of aliasing metadata will be introduced.
This metadata needs to be carried around in AliasAnalysis::Location objects
(and MMOs at the SDAG level), and so we need to generalize the current scheme
(which is hard-coded to just one TBAA MDNode*).
This commit introduces only the necessary refactoring to allow for the
introduction of other aliasing metadata types, but does not actually introduce
any (that will come in a follow-up commit). What it does introduce is a new
AAMDNodes structure to hold all of the aliasing metadata nodes associated with
a particular memory-accessing instruction, and uses that structure instead of
the raw MDNode* in AliasAnalysis::Location, etc.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213859 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM ARM prohibits STRH instructions with writeback into the source register. With this commit this constraint is now enforced and we stop assembling STRH instructions with unpredictable behavior.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213850 91177308-0d34-0410-b5e6-96231b3b80d8
Use ComputeNumSignBits instead of checking for i8 / i16 which only
worked when AMDIL was lying about having legal i8 / i16.
If an integer is known to fit in 24-bits, we can
do division faster with float ops.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213843 91177308-0d34-0410-b5e6-96231b3b80d8
This bug is introduced by r211144. The element of operand may be
smaller than the element of result, but previous commit can
only handle the contrary condition. This commit is to handle this
scenario and generate optimized codes like ZIP1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213830 91177308-0d34-0410-b5e6-96231b3b80d8
When we had a vector_shuffle where we had an input from each vector, we
could miscompile it because we were assuming the input from V2 wouldn't
be moved from where it was on the vector.
Added a test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213826 91177308-0d34-0410-b5e6-96231b3b80d8
Add `Value::sortUseList()`, templated on the comparison function to use.
The sort is an iterative merge sort that uses a binomial vector of
already-merged lists to limit the size overhead to `O(1)`.
This is part of PR5680.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213824 91177308-0d34-0410-b5e6-96231b3b80d8
This allows people to try clang inside MSBuild with the VS "14" CTP
releases.
Fixes PR20341.
Patch by Marcel Raad!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213819 91177308-0d34-0410-b5e6-96231b3b80d8
We use gep to access the global array "switch.table", and the table index
should be treated as unsigned. When the highest bit is 1, this commit
zero-extends the index to an integer type with larger size.
For a switch on i2, we used to generate:
%switch.tableidx = sub i2 %0, -2
getelementptr inbounds [4 x i64]* @switch.table, i32 0, i2 %switch.tableidx
It is incorrect when %switch.tableidx is 2 or 3. The fix is to generate
%switch.tableidx = sub i2 %0, -2
%switch.tableidx.zext = zext i2 %switch.tableidx to i3
getelementptr inbounds [4 x i64]* @switch.table, i32 0, i3 %switch.tableidx.zext
rdar://17735071
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213815 91177308-0d34-0410-b5e6-96231b3b80d8
It isn't reasonable to test storing things using undef pointers --
storing through those is at best "good luck" and really should be
transformed to "unreachable". Random changes in the combiner can
randomly break these tests for no good reason. I'm following up on the
original commit regarding the right long-term strategy here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213810 91177308-0d34-0410-b5e6-96231b3b80d8
There were still some disassembler bits in lib/MC, but their use of Object
was only visible in the includes they used, not in the symbols.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213808 91177308-0d34-0410-b5e6-96231b3b80d8
While the subprogram map cache used by Dead Argument Elimination works
there, I made a mistake when reusing it for Argument Promotion in
r212128 because ArgPromo may transform functions more than once whereas
DAE transforms each function only once, removing all the dead arguments
in one go.
To address this, ensure that the map is updated after each argument
promotion.
In retrospect it might be a little wasteful to create a map of all
subprograms when only handling a single CGSCC, but the alternative is
walking the debug info for each function in the CGSCC that gets updated.
It's not clear to me what the right tradeoff is there, but since the
current tradeoff seems to be working OK (and the code to keep things
updated is very cheap), let's stick with that for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213805 91177308-0d34-0410-b5e6-96231b3b80d8
Also the debug location I had here was bogus, describing the location of
the call site as in the callee - and unnecessary, so just drop it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213803 91177308-0d34-0410-b5e6-96231b3b80d8
The transform to constant fold unary operations with an AND across a
vector comparison applies when the constant is not a splat of a scalar
as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213800 91177308-0d34-0410-b5e6-96231b3b80d8
The folding of unary operations through a vector compare and mask operation
is only safe if the unary operation result is of the same size as its input.
For example, it's not safe for [su]itofp from v4i32 to v4f64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213799 91177308-0d34-0410-b5e6-96231b3b80d8
Constant fold the lanes of the input constant build_vector individually
so we correctly handle when the vector elements are not all the same
constant value.
PR20394
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213798 91177308-0d34-0410-b5e6-96231b3b80d8
The cast to NVPTXTargetLowering was missing a 'const', but let's
just access the right pointer through the subtarget anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213793 91177308-0d34-0410-b5e6-96231b3b80d8