structure to being dynamically computed on demand. This makes updating
loop information MUCH easier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13045 91177308-0d34-0410-b5e6-96231b3b80d8
that the exit block of the loop becomes the new entry block of the function.
This was causing a verifier assertion on 252.eon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13039 91177308-0d34-0410-b5e6-96231b3b80d8
block. The primary motivation for doing this is that we can now unroll nested loops.
This makes a pretty big difference in some cases. For example, in 183.equake,
we are now beating the native compiler with the CBE, and we are a lot closer
with LLC.
I'm now going to play around a bit with the unroll factor and see what effect
it really has.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13034 91177308-0d34-0410-b5e6-96231b3b80d8
limited. Even in it's extremely simple state (it can only *fully* unroll single
basic block loops that execute a constant number of times), it already helps improve
performance a LOT on some benchmarks, particularly with the native code generators.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13028 91177308-0d34-0410-b5e6-96231b3b80d8
operations. This allows us to compile this testcase:
int main() {
int h = 1;
do h = 3 * h + 1; while (h <= 256);
printf("%d\n", h);
return 0;
}
into this:
int %main() {
entry:
call void %__main( )
%tmp.6 = call int (sbyte*, ...)* %printf( sbyte* getelementptr ([4 x sbyte]* %.str_1, long 0, long 0), int 364 ) ; <int> [#uses=0]
ret int 0
}
This testcase was taken directly from 256.bzip2, believe it or not.
This code is not as general as I would like. Next up is to refactor it
a bit to handle more cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13019 91177308-0d34-0410-b5e6-96231b3b80d8
even if the loop is using expressions that we can't compute as a closed-form.
This allows us to calculate that this function always returns 55:
int test() {
double X;
int Count = 0;
for (X = 100; X > 1; X = sqrt(X), ++Count)
/*empty*/;
return Count;
}
And allows us to compute trip counts for loops like:
int h = 1;
do h = 3 * h + 1; while (h <= 256);
(which occurs in bzip2), and for this function, which occurs after inlining
and other optimizations:
int popcount()
{
int x = 666;
int result = 0;
while (x != 0) {
result = result + (x & 0x1);
x = x >> 1;
}
return result;
}
We still cannot compute the exit values of result or h in the two loops above,
which means we cannot delete the loop, but we are getting closer. Being able to
compute a constant trip count for these two loops will allow us to unroll them
completely though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13017 91177308-0d34-0410-b5e6-96231b3b80d8
that does not dominate all of its users, but is in the same basic block as
its users. This class of error is what caused the mysterious CBE only
failures last night.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12979 91177308-0d34-0410-b5e6-96231b3b80d8
Basically we were using SimplifyCFG as a huge sledgehammer for a simple
optimization. Because simplifycfg does so many things, we can't use it
for this purpose.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12977 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of producing code like this:
Loop:
X = phi 0, X2
...
X2 = X + 1
if (X != N-1) goto Loop
We now generate code that looks like this:
Loop:
X = phi 0, X2
...
X2 = X + 1
if (X2 != N) goto Loop
This has two big advantages:
1. The trip count of the loop is now explicit in the code, allowing
the direct implementation of Loop::getTripCount()
2. This reduces register pressure in the loop, and allows X and X2 to be
put into the same register.
As a consequence of the second point, the code we generate for loops went
from:
.LBB2: # no_exit.1
...
mov %EDI, %ESI
inc %EDI
cmp %ESI, 2
mov %ESI, %EDI
jne .LBB2 # PC rel: no_exit.1
To:
.LBB2: # no_exit.1
...
inc %ESI
cmp %ESI, 3
jne .LBB2 # PC rel: no_exit.1
... which has two fewer moves, and uses one less register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12961 91177308-0d34-0410-b5e6-96231b3b80d8
The iterator is pointing at the next instruction which should not disappear
when doing the load/store replacement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12954 91177308-0d34-0410-b5e6-96231b3b80d8
at the bottom of the loop instead of the top. This reduces the number of
overlapping live ranges a lot, for example, eliminating a spill in an important
loop in 183.equake with linear scan.
I still need to make the exit comparison of the loop use the post-incremented
version of this variable, but this is an easy first step.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12952 91177308-0d34-0410-b5e6-96231b3b80d8
even when the "optimization" I added before is turned off. It generates this
extremely pointless code:
test:
fld QWORD PTR [%ESP + 4]
mov %AL, 0
test %AL, %AL
fcmove %ST(0), %ST(0)
ret
Good thing the optimizer will have removed this before code generation
anyway. :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12939 91177308-0d34-0410-b5e6-96231b3b80d8