with an invalid type then split the result and perform the overflow check
normally.
Fixes the 32-bit parts of rdar://8622122 and rdar://8774702.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123864 91177308-0d34-0410-b5e6-96231b3b80d8
interval after an instruction. The leaveIntvAfter() method only adds liveness
from the instruction's boundary index to the inserted copy.
Ideally, SplitKit should be smarter about this, perhaps by combining useIntv()
and leaveIntvAfter() into one method that guarantees continuity.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123858 91177308-0d34-0410-b5e6-96231b3b80d8
Region splitting includes loop splitting as a subset, and it is more generic.
The splitting heuristics for variables that are live in more than one block are
now:
1. Try to create a region that covers multiple basic blocks.
2. Try to create a new live range for each block with multiple uses.
3. Spill.
Steps 2 and 3 are similar to what the standard spiller is doing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123853 91177308-0d34-0410-b5e6-96231b3b80d8
by indvars through the scev expander.
trunc(add x, y) --> add(trunc x, y). Currently SCEV largely folds the other way
which is probably wrong, but preserved to minimize churn. Instcombine doesn't
do this fold either, demonstrating a missed optz'n opportunity on code doing
add+trunc+add.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123838 91177308-0d34-0410-b5e6-96231b3b80d8
of the floating point types less than 64-bits. It's somewhat of a temporary
hack but forces more accurate modeling of register pressure and results
in fewer spills.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123811 91177308-0d34-0410-b5e6-96231b3b80d8
Unfortunately, while this is the "right" thing to do, it breaks some ARM
asm parsing tests because MemMode5 and ThumbMemModeReg are ambiguous. This
is tricky to resolve since neither is a subset of the other.
XFAIL the test for now. The old way was broken in other ways, just ways
we didn't happen to be testing, and our ARM asm parsing is going to require
significant revisiting at a later point anyways.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123786 91177308-0d34-0410-b5e6-96231b3b80d8
are pointing to the same object, one pointer is accessing the entire
object, and the other is access has a non-zero size. This prevents
TBAA from kicking in and saying NoAlias in such cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123775 91177308-0d34-0410-b5e6-96231b3b80d8
Analyze the live range's behavior entering and leaving basic blocks. Compute an
interference pattern for each allocation candidate, and use SpillPlacement to
find an optimal region where that register can be live.
This code is still not enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123774 91177308-0d34-0410-b5e6-96231b3b80d8
These were not recommended by my auto-simplifier since they don't fire often enough.
However they do fire from time to time, for example they remove one subtraction from
the final bitcode for 483.xalancbmk.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123755 91177308-0d34-0410-b5e6-96231b3b80d8
simplification in fully optimized code. It occurs sporadically in the testsuite, and
many times in 403.gcc: the final bitcode has 131 fewer subtractions after this change.
The reason that the multiplies are not eliminated is the same reason that instcombine
did not catch this: they are used by other instructions (instcombine catches this with
a more general transform which in general is only profitable if the operands have only
one use).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123754 91177308-0d34-0410-b5e6-96231b3b80d8
function. This seems to be about a 1.5% speedup of -scalarrepl on test-suite
with SPEC2000 and SPEC2006.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123731 91177308-0d34-0410-b5e6-96231b3b80d8