This has a few advantages:
* Only targets that use a MCTargetStreamer have to worry about it.
* There is never a MCTargetStreamer without a MCStreamer, so we can use a
reference.
* A MCTargetStreamer can talk to the MCStreamer in its constructor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200129 91177308-0d34-0410-b5e6-96231b3b80d8
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198685 91177308-0d34-0410-b5e6-96231b3b80d8
add_public_tablegen_target adds *CommonTableGen to LLVM_COMMON_DEPENDS.
LLVM_COMMON_DEPENDS affects add_llvm_library (and other add_target stuff) within its scope.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195927 91177308-0d34-0410-b5e6-96231b3b80d8
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file. The memory leaks in this version have been fixed. Thanks
Alexey for pointing them out.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195064 91177308-0d34-0410-b5e6-96231b3b80d8
This change is incorrect. If you delete virtual destructor of both a base class
and a subclass, then the following code:
Base *foo = new Child();
delete foo;
will not cause the destructor for members of Child class. As a result, I observe
plently of memory leaks. Notable examples I investigated are:
ObjectBuffer and ObjectBufferStream, AttributeImpl and StringSAttributeImpl.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194997 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes an old FIXME by creating a MCTargetStreamer interface
and moving the target specific functions for ARM, Mips and PPC to it.
The ARM streamer is still declared in a common place because it is
used from lib/CodeGen/ARMException.cpp, but the Mips and PPC are
completely hidden in the corresponding Target directories.
I will send an email to llvmdev with instructions on how to use this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192181 91177308-0d34-0410-b5e6-96231b3b80d8
When asked to pad an irregular number of bytes, we should fill with
zeros. This is consistent with the behavior specified in the AIX
Assembler Language Reference as well as other LLVM and binutils
assemblers.
N.B. There is a small deviation from binutils' PPC assembler:
when handling pads which are greater than 4 bytes but not mod 4,
binutils will not emit any NOP sequences at all and only use zeros.
This may or may not be a bug but there is no excellent rationale as to
why that behavior is important to emulate. If that behavior is needed,
we can change writeNopData() to behave in the same way.
This fixes PR17352.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191426 91177308-0d34-0410-b5e6-96231b3b80d8
The binutils assembler supports a mode called DOLLAR_DOT which treats
the dollar sign token as a reference to the current program counter if
the dollar sign doesn't precede a constant or identifier.
This commit adds a new MCAsmInfo flag stating whether or not a given
target supports this interpretation of the dollar sign token; by
default, this flag is not enabled.
Further, enable this flag for PPC. The system assembler for AIX and
binutils both support using the dollar sign in this manner.
This fixes PR17353.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191368 91177308-0d34-0410-b5e6-96231b3b80d8
Fast-isel generates a COPY_TO_REGCLASS for widening f32 to f64, which
is a nop on PPC64. This is needed to keep the register class system
happy, but on the fast-isel path it is not removed before emit as it
is for DAG select. Ignore this op when emitting instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190795 91177308-0d34-0410-b5e6-96231b3b80d8
We used to generate the compact unwind encoding from the machine
instructions. However, this had the problem that if the user used `-save-temps'
or compiled their hand-written `.s' file (with CFI directives), we wouldn't
generate the compact unwind encoding.
Move the algorithm that generates the compact unwind encoding into the
MCAsmBackend. This way we can generate the encoding whether the code is from a
`.ll' or `.s' file.
<rdar://problem/13623355>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190290 91177308-0d34-0410-b5e6-96231b3b80d8
first. Use this to turn the PPC modifiers into PPC specific expressions,
allowing them to work on constants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189400 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commits r189319 and r189315. r189315 broke some tests on what I
believe are big-endian platforms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189321 91177308-0d34-0410-b5e6-96231b3b80d8
this records relocation entries in the mach-o object file
for PIC code generation.
tested on powerpc-darwin8, validated against darwin otool -rvV
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188004 91177308-0d34-0410-b5e6-96231b3b80d8
This patch provides basic support for powerpc64le as an LLVM target.
However, use of this target will not actually generate little-endian
code. Instead, use of the target will cause the correct little-endian
built-in defines to be generated, so that code that tests for
__LITTLE_ENDIAN__, for example, will be correctly parsed for
syntax-only testing. Code generation will otherwise be the same as
powerpc64 (big-endian), for now.
The patch leaves open the possibility of creating a little-endian
PowerPC64 back end, but there is no immediate intent to create such a
thing.
The LLVM portions of this patch simply add ppc64le coverage everywhere
that ppc64 coverage currently exists. There is nothing of any import
worth testing until such time as little-endian code generation is
implemented. In the corresponding Clang patch, there is a new test
case variant to ensure that correct built-in defines for little-endian
code are generated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187179 91177308-0d34-0410-b5e6-96231b3b80d8
In the commit message to r185476 I wrote:
>The PowerPC-specific modifiers VK_PPC_TLSGD and VK_PPC_TLSLD
>correspond exactly to the generic modifiers VK_TLSGD and VK_TLSLD.
>This causes some confusion with the asm parser, since VK_PPC_TLSGD
>is output as @tlsgd, which is then read back in as VK_TLSGD.
>
>To avoid this confusion, this patch removes the PowerPC-specific
>modifiers and uses the generic modifiers throughout. (The only
>drawback is that the generic modifiers are printed in upper case
>while the usual convention on PowerPC is to use lower-case modifiers.
>But this is just a cosmetic issue.)
This was unfortunately incorrect, there is is fact another,
serious drawback to using the default VK_TLSLD/VK_TLSGD
variant kinds: using these causes ELFObjectWriter::RelocNeedsGOT
to return true, which in turn causes the ELFObjectWriter to emit
an undefined reference to _GLOBAL_OFFSET_TABLE_.
This is a problem on powerpc64, because it uses the TOC instead
of the GOT, and the linker does not provide _GLOBAL_OFFSET_TABLE_,
so the symbol remains undefined. This means shared libraries
using TLS built with the integrated assembler are currently
broken.
While the whole RelocNeedsGOT / _GLOBAL_OFFSET_TABLE_ situation
probably ought to be properly fixed at some point, for now I'm
simply reverting the r185476 commit. Now this in turn exposes
the breakage of handling @tlsgd/@tlsld in the asm parser that
this check-in was originally intended to fix.
To avoid this regression, I'm also adding a different fix for
this problem: while common code now parses @tlsgd as VK_TLSGD,
a special hack in the asm parser translates this code to the
platform-specific VK_PPC_TLSGD that the back-end now expects.
While this is not really pretty, it's self-contained and
shouldn't hurt anything else for now. One the underlying
problem is fixed, this hack can be reverted again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185945 91177308-0d34-0410-b5e6-96231b3b80d8
A setting in MCAsmInfo defines the "assembler dialect" to use. This is used
by common code to choose between alternatives in a multi-alternative GNU
inline asm statement like the following:
__asm__ ("{sfe|subfe} %0,%1,%2" : "=r" (out) : "r" (in1), "r" (in2));
The meaning of these dialects is platform specific, and GCC defines those
for PowerPC to use dialect 0 for old-style (POWER) mnemonics and 1 for
new-style (PowerPC) mnemonics, like in the example above.
To be compatible with inline asm used with GCC, LLVM ought to do the same.
Specifically, this means we should always use assembler dialect 1 since
old-style mnemonics really aren't supported on any current platform.
However, the current LLVM back-end uses:
AssemblerDialect = 1; // New-Style mnemonics.
in PPCMCAsmInfoDarwin, and
AssemblerDialect = 0; // Old-Style mnemonics.
in PPCLinuxMCAsmInfo.
The Linux setting really isn't correct, we should be using new-style
mnemonics everywhere. This is changed by this commit.
Unfortunately, the setting of this variable is overloaded in the back-end
to decide whether or not we are on a Darwin target. This is done in
PPCInstPrinter (the "SyntaxVariant" is initialized from the MCAsmInfo
AssemblerDialect setting), and also in PPCMCExpr. Setting AssemblerDialect
to 1 for both Darwin and Linux no longer allows us to make this distinction.
Instead, this patch uses the MCSubtargetInfo passed to createPPCMCInstPrinter
to distinguish Darwin targets, and ignores the SyntaxVariant parameter.
As to PPCMCExpr, this patch adds an explicit isDarwin argument that needs
to be passed in by the caller when creating a target MCExpr. (To do so
this patch implicitly also reverts commit 184441.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185858 91177308-0d34-0410-b5e6-96231b3b80d8
When a target@got@tprel or target@got@tprel@l symbol variant is used in
a fixup_ppc_half16 (*not* fixup_ppc_half16ds) context, we currently fail,
since the corresponding R_PPC64_GOT_TPREL16 / R_PPC64_GOT_TPREL16_LO
relocation types do not exist.
However, since such symbol variants resolve to GOT offsets which are
always 4-aligned, we can simply instead use the _DS variants of the
relocation types, which *do* exist.
The same applies for the @got@dtprel variants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185700 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for the last missing construct to parse TLS-related
assembler code:
add 3, 4, symbol@tls
The ADD8TLS currently hard-codes the @tls into the assembler string.
This cannot be handled by the asm parser, since @tls is parsed as
a symbol variant. This patch changes ADD8TLS to have the @tls suffix
printed as symbol variant on output too, which allows us to remove
the isCodeGenOnly marker from ADD8TLS. This in turn means that we
can add a AsmOperand to accept @tls marked symbols on input.
As a side effect, this means that the fixup_ppc_tlsreg fixup type
is no longer necessary and can be merged into fixup_ppc_nofixup.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185692 91177308-0d34-0410-b5e6-96231b3b80d8
This implements a proper PPCAsmBackend::writeNopData routine
that actually writes PowerPC nop instructions.
This fixes the last remaining difference in object file output
(text section) between the integrated assembler and GNU as
that I've seen anywhere.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185662 91177308-0d34-0410-b5e6-96231b3b80d8
Just as with mfocrf, it is also preferable to use mtocrf instead of
mtcrf when only a single CR register is to be written.
Current code however always emits mtcrf. This probably does not matter
when using an external assembler, since the GNU assembler will in fact
automatically replace mtcrf with mtocrf when possible. It does create
inefficient code with the integrated assembler, however.
To fix this, this patch adds MTOCRF/MTOCRF8 instruction patterns and
uses those instead of MTCRF/MTCRF8 everything. Just as done in the
MFOCRF patch committed as 185556, these patterns will be converted
back to MTCRF if MTOCRF is not available on the machine.
As a side effect, this allows to modify the MTCRF pattern to accept
the full range of mask operands for the benefit of the asm parser.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185561 91177308-0d34-0410-b5e6-96231b3b80d8
When accessing just a single CR register, it is always preferable to
use mfocrf instead of mfcr, if the former is available on the CPU.
Current code makes that distinction in many, but not all places
where a single CR register value is retrieved. One missing
location is PPCRegisterInfo::lowerCRSpilling.
To fix this and make this simpler in the future, this patch changes
the bulk of the back-end to always assume mfocrf is available and
simply generate it when needed.
On machines that actually do not support mfocrf, the instruction
is replaced by mfcr at the very end, in EmitInstruction.
This has the additional benefit that we no longer need the
MFCRpseud hack, since before EmitInstruction we always have
a MFOCRF instruction pattern, which already models data flow
as required.
The patch also adds the MFOCRF8 version of the instruction,
which was missing so far.
Except for the PPCRegisterInfo::lowerCRSpilling case, no change
in generated code intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185556 91177308-0d34-0410-b5e6-96231b3b80d8
As part of the global-dynamic and local-dynamic TLS sequences, we need
to use a special form of the call instruction:
bl __tls_get_addr(sym@tlsld)
bl __tls_get_addr(sym@tlsgd)
which generates two fixups. The current implementation of this causes
problems with recognizing this form in the asm parser. To fix this,
this patch reworks operand processing for this special form by using
a single operand to hold both __tls_get_addr and sym@tlsld and defining
a print method to output the above form, and an encoding method to
generate the two fixups.
As a side simplification, the patch replaces the two instruction
patterns BL8_NOP_TLSGD and BL8_NOP_TLSLD by a single BL8_NOP_TLS,
since the patterns already operate in an identical fashion (whether
we have a local-dynamic or global-dynamic symbol is already encoded
in the symbol modifier).
No change in code generation intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185477 91177308-0d34-0410-b5e6-96231b3b80d8
The PowerPC-specific modifiers VK_PPC_TLSGD and VK_PPC_TLSLD
correspond exactly to the generic modifiers VK_TLSGD and VK_TLSLD.
This causes some confusion with the asm parser, since VK_PPC_TLSGD
is output as @tlsgd, which is then read back in as VK_TLSGD.
To avoid this confusion, this patch removes the PowerPC-specific
modifiers and uses the generic modifiers throughout. (The only
drawback is that the generic modifiers are printed in upper case
while the usual convention on PowerPC is to use lower-case modifiers.
But this is just a cosmetic issue.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185476 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for TLS data relocations and modifiers:
.quad target@dtpmod
.quad target@tprel
.quad target@dtprel
Currently exploited by the asm parser only.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185394 91177308-0d34-0410-b5e6-96231b3b80d8
A @got reference must always result in a relocation, so that
the linker has a chance to set up the GOT entry, even if the
symbol happens to be local.
Add a PPCELFObjectWriter::ExplicitRelSym routine that enforces
a relocation to be emitted for GOT references.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185353 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, all instructions taking s16imm operands support symbolic
operands. However, for u16imm operands, we only support actual
immediate integers. This causes the assembler to reject code like
ori %r5, %r5, symbol@l
This patch changes the u16imm operand definition to likewise
accept symbolic operands. In fact, s16imm and u16imm can
share the same encoding routine, now renamed to getImm16Encoding.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184944 91177308-0d34-0410-b5e6-96231b3b80d8
Add VK_... values and relocation types necessary to support
the @got family of modifiers. Used by the asm parser only.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184860 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for the predicted forms of branches (+/-).
There are three cases to consider:
- Branches using a PPC::Predicate code
For these, I've added new PPC::Predicate codes corresponding
to the BO values for predicted branch forms, and updated insn
printing to print them correctly. I've also added new aliases
for the asm parser matching the new forms.
- bt/bf
I've added new aliases matching to gBC etc.
- bd(n)z variants
I've added new instruction patterns for the predicted forms.
In all cases, the new patterns are used for the asm parser only.
(The new infrastructure ought to be sufficient to allow use by
the compiler too at some point.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184754 91177308-0d34-0410-b5e6-96231b3b80d8
There is currently only limited support for the "absolute" variants
of branch instructions. This patch adds support for the absolute
variants of all branches that are currently otherwise supported.
This requires adding new fixup types so that the correct variant
of relocation type can be selected by the object writer.
While the compiler will continue to usually choose the relative
branch variants, this will allow the asm parser to fully support
the absolute branches, with either immediate (numerical) or
symbolic target addresses.
No change in code generation intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184721 91177308-0d34-0410-b5e6-96231b3b80d8
The GNU assembler supports (as extension to the ABI) use of PC-relative
relocations in half16 fields, which allows writing code like:
li 1, base-.
This patch adds support for those relocation types in the assembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184552 91177308-0d34-0410-b5e6-96231b3b80d8
The current code base only supports the minimum set of tls-related
relocations and @modifiers that are necessary to support compiler-
generated code. This patch extends this to the full set defined
in the ABI (and supported by the GNU assembler) for the benefit
of the assembler parser.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184551 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for the @higher, @highera, @highest, and @highesta
modifers, including some missing relocation types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184550 91177308-0d34-0410-b5e6-96231b3b80d8
This adds the relocation type and other necessary infrastructure
to use the @toc@h modifier in the assembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184549 91177308-0d34-0410-b5e6-96231b3b80d8
This adds necessary infrastructure to support the @h modifier.
Note that all required relocation types were already present
(and unused).
This patch provides support for using @h in the assembler;
it would also be possible to now use this feature in code
generated by the compiler, but this is not done yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184548 91177308-0d34-0410-b5e6-96231b3b80d8
This renames more VK_PPC_ enums, to make them more closely reflect
the @modifier string they represent. This also prepares for adding
a bunch of new VK_PPC_ enums in upcoming patches.
For consistency, some MO_ flags related to VK_PPC_ enums are
likewise renamed.
No change in behaviour.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184547 91177308-0d34-0410-b5e6-96231b3b80d8