using it to detect whether or not a terminal supports colors. This
replaces a particularly egregious hack that merely compared the TERM
environment variable to "dumb". That doesn't really translate to
a reasonable experience for users that have actually ensured their
terminal's capabilities are accurately reflected.
This makes testing a terminal for color support somewhat more expensive,
but it is called very rarely anyways. The important fast path when the
output is being piped somewhere is already in place.
The global lock may seem excessive, but the spec for calling into curses
is *terrible*. The whole library is terrible, and I spent quite a bit of
time looking for a better way of doing this before convincing myself
that this was the fundamentally correct way to behave. The damage of the
curses library is very narrowly confined, and we continue to use raw
escape codes for actually manipulating the colors which is a much sane
system than directly using curses here (IMO).
If this causes trouble for folks, please let me know. I've tested it on
Linux and will watch the bots carefully. I've also worked to account for
the variances of curses interfaces that I could finde documentation for,
but that may not have been sufficient.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187874 91177308-0d34-0410-b5e6-96231b3b80d8
for StringRef with a StringMap
The bug is that the empty key compares equal to the tombstone key.
Also added an assertion to DenseMap to catch similar bugs in future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187866 91177308-0d34-0410-b5e6-96231b3b80d8
One use needs to copy the alloca into a std::string, and the other use
is before calling CreateProcess, which is very heavyweight anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187845 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is a second attempt to get this right. After reading the Unicode
Standard I came up with the code that uses definitions of "printable" and
"column width" more suitable for terminal output (i.e. fixed-width fonts and
special treatment of many control characters).
The implementation here can probably be used for Windows and MacOS if someone
can test it properly.
The patch addresses PR14910.
Reviewers: jordan_rose, gribozavr
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1253
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187837 91177308-0d34-0410-b5e6-96231b3b80d8
Since the VSrc_* register classes contain both VGPRs and SGPRs, copies
that used be emitted by isel like this:
SGPR = COPY VGPR
Will now be emitted like this:
VSrC = COPY VGPR
This patch also adds a pass that tries to identify and fix situations where
a VGPR to SGPR copy may occur. Hopefully, these changes will make it
impossible for the compiler to generate illegal VGPR to SGPR copies.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187831 91177308-0d34-0410-b5e6-96231b3b80d8
The globals being generated here were given the 'private' linkage type. However,
this caused them to end up in different sections with the wrong prefix. E.g.,
they would be in the __TEXT,__const section with an 'L' prefix instead of an 'l'
(lowercase ell) prefix.
The problem is that the linker will eat a literal label with 'L'. If a weak
symbol is then placed into the __TEXT,__const section near that literal, then it
cannot distinguish between the literal and the weak symbol.
Part of the problems here was introduced because the address sanitizer converted
some C strings into constant initializers with trailing nuls. (Thus putting them
in the __const section with the wrong prefix.) The others were variables that
the address sanitizer created but simply had the wrong linkage type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187827 91177308-0d34-0410-b5e6-96231b3b80d8
LLVM's coding standards recommend raw_ostream and MemoryBuffer for
reading and writing text.
This has the side effect of allowing clang to compile more of Support
and TableGen in the Microsoft C++ ABI.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187826 91177308-0d34-0410-b5e6-96231b3b80d8
unnecessary jalr InstAliases in Mips64InstrInfo.td and add the code to print
jalr InstAliases in MipsInstPrinter::printAlias.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187821 91177308-0d34-0410-b5e6-96231b3b80d8
Also remove checking of llvm.dbg.sp since it is not used in generating dwarf.
Current state of Finder:
DebugInfoFinder tries to list all debug info MDNodes used in a module. To
list debug info MDNodes used by an instruction, DebugInfoFinder provides
processDeclare, processValue and processLocation to handle DbgDeclareInst,
DbgValueInst and DbgLoc attached to instructions. processModule will go
through all DICompileUnits in llvm.dbg.cu and list debug info MDNodes
used by the CUs.
TODO:
1> Finder has a list of CUs, SPs, Types, Scopes and global variables. We
need to add a list of variables that are used by DbgDeclareInst and
DbgValueInst.
2> MDString fields should be null or isa<MDString> and MDNode fields should be
null or isa<MDNode>. We currently use empty string or int 0 to represent null.
3> Go though Verify functions and make sure that they check field types.
4> Clean up existing testing cases to remove llvm.dbg.sp and make sure each
testing case has a llvm.dbg.cu.
Re-apply r187609 with fix to pass ocaml binding. vmcore.ml generates a debug
location with scope being metadata !{}, in verifier we treat this as a null
scope.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187812 91177308-0d34-0410-b5e6-96231b3b80d8
The PPC backend had been missing a pattern to generate mulli for 64-bit
multiples. We had been generating it only for 32-bit multiplies. Unfortunately,
generating li + mulld unnecessarily increases register pressure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187807 91177308-0d34-0410-b5e6-96231b3b80d8
We do use a very small set of physical registers, so account for
them in the virtual register encoding between MachineInstr and MC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187799 91177308-0d34-0410-b5e6-96231b3b80d8
This change converts the NVPTX target to use the MC infrastructure
instead of directly emitting MachineInstr instances. This brings
the target more up-to-date with LLVM TOT, and should fix PR15175
and PR15958 (libNVPTXInstPrinter is empty) as a side-effect.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187798 91177308-0d34-0410-b5e6-96231b3b80d8
This change came about primarily because of two issues in the existing code.
Niether of:
define i64 @test1(i64 %val) {
%in = trunc i64 %val to i32
tail call i32 @ret32(i32 returned %in)
ret i64 %val
}
define i64 @test2(i64 %val) {
tail call i32 @ret32(i32 returned undef)
ret i32 42
}
should be tail calls, and the function sameNoopInput is responsible. The main
problem is that it is completely symmetric in the "tail call" and "ret" value,
but in reality different things are allowed on each side.
For these cases:
1. Any truncation should lead to a larger value being generated by "tail call"
than needed by "ret".
2. Undef should only be allowed as a source for ret, not as a result of the
call.
Along the way I noticed that a mismatch between what this function treats as a
valid truncation and what the backends see can lead to invalid calls as well
(see x86-32 test case).
This patch refactors the code so that instead of being based primarily on
values which it recurses into when necessary, it starts by inspecting the type
and considers each fundamental slot that the backend will see in turn. For
example, given a pathological function that returned {{}, {{}, i32, {}}, i32}
we would consider each "real" i32 in turn, and ask if it passes through
unchanged. This is much closer to what the backend sees as a result of
ComputeValueVTs.
Aside from the bug fixes, this eliminates the recursion that's going on and, I
believe, makes the bulk of the code significantly easier to understand. The
trade-off is the nasty iterators needed to find the real types inside a
returned value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187787 91177308-0d34-0410-b5e6-96231b3b80d8
Without explicit dependencies, both per-file action and in-CommonTableGen action could run in parallel.
It races to emit *.inc files simultaneously.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187780 91177308-0d34-0410-b5e6-96231b3b80d8
We use MVT::i32 for the vector index type, because we use 32-bit
operations to caculate offsets when dynamically indexing vectors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187749 91177308-0d34-0410-b5e6-96231b3b80d8
This virtual function can be implemented by targets to specify the type
to use for the index operand of INSERT_VECTOR_ELT, EXTRACT_VECTOR_ELT,
INSERT_SUBVECTOR, EXTRACT_SUBVECTOR. The default implementation returns
the result from TargetLowering::getPointerTy()
The previous code was using TargetLowering::getPointerTy() for vector
indices, because this is guaranteed to be legal on all targets. However,
using TargetLowering::getPointerTy() can be a problem for targets with
pointer sizes that differ across address spaces. On such targets,
when vectors need to be loaded or stored to an address space other than the
default 'zero' address space (which is the address space assumed by
TargetLowering::getPointerTy()), having an index that
is a different size than the pointer can lead to inefficient
pointer calculations, (e.g. 64-bit adds for a 32-bit address space).
There is no intended functionality change with this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187748 91177308-0d34-0410-b5e6-96231b3b80d8