- move AsmWriter.h from public headers into lib
- marked all AssemblyWriter functions as non-virtual; no need to override them
- DebugIR now "plugs into" AssemblyWriter with an AssemblyAnnotationWriter helper
- exposed flags to control hiding of a) debug metadata b) debug intrinsic calls
C/R: Paul Redmond
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182617 91177308-0d34-0410-b5e6-96231b3b80d8
When targeting the Darwin assembler, we need to generate markers ha16() and
lo16() to designate the high and low parts of a (symbolic) immediate. This
is necessary not just for plain symbols, but also for certain symbolic
expression, typically along the lines of ha16(A - B). The latter doesn't
work when simply using VariantKind flags on the symbol reference.
This is why the current back-end uses hacks (explicitly called out as such
via multiple FIXMEs) in the symbolLo/symbolHi print methods.
This patch uses target-defined MCExpr codes to represent the Darwin
ha16/lo16 constructs, following along the lines of the equivalent solution
used by the ARM back end to handle their :upper16: / :lower16: markers.
This allows us to get rid of special handling both in the symbolLo/symbolHi
print method and in the common code MCExpr::print routine. Instead, the
ha16 / lo16 markers are printed simply in a custom print routine for the
target MCExpr types. (As a result, the symbolLo/symbolHi print methods
can now replaced by a single printS16ImmOperand routine that also handles
symbolic operands.)
The patch also provides a EvaluateAsRelocatableImpl routine to handle
ha16/lo16 constructs. This is not actually used at the moment by any
in-tree code, but is provided as it makes merging into David Fang's
out-of-tree Mach-O object writer simpler.
Since there is no longer any need to treat VK_PPC_GAS_HA16 and
VK_PPC_DARWIN_HA16 differently, they are merged into a single
VK_PPC_ADDR16_HA (and likewise for the _LO16 types).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182616 91177308-0d34-0410-b5e6-96231b3b80d8
There were bits & pieces of code lying around that may've given the
impression that debug info metadata supported the possibility that a
subprogram's type could be specified by a non-subroutine type describing
the return type of a void function. This support was incomplete &
unnecessary. Asserts & API have been changed to make the desired usage
more clear.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182532 91177308-0d34-0410-b5e6-96231b3b80d8
the C API to provide their own way of allocating JIT memory (both code
and data) and finalizing memory permissions (page protections, cache
flush).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182448 91177308-0d34-0410-b5e6-96231b3b80d8
Solaris doesn't have an endian.h header, but SPARC is the only
big-endian architecture that runs Solaris, so just use that to detect
endianness at compile time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182419 91177308-0d34-0410-b5e6-96231b3b80d8
libExecutionEngine. Move method implementations that aren't specific to
allocation out of SectionMemoryManager and into RTDyldMemoryManager.
This is in preparation for exposing RTDyldMemoryManager through the C
API.
This is a fixed version of r182407 and r182411. That first revision
broke builds because I forgot to move the conditional includes of
various POSIX headers from SectionMemoryManager into
RTDyldMemoryManager. Those includes are necessary because of how
getPointerToNamedFunction works around the glibc libc_nonshared.a thing.
The latter revision still broke things because I forgot to include
llvm/Config/config.h.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182418 91177308-0d34-0410-b5e6-96231b3b80d8
libExecutionEngine. Move method implementations that aren't specific to
allocation out of SectionMemoryManager and into RTDyldMemoryManager.
This is in preparation for exposing RTDyldMemoryManager through the C
API.
This is a fixed version of r182407. That revision broke builds because I
forgot to move the conditional includes of various POSIX headers from
SectionMemoryManager into RTDyldMemoryManager. Those includes are
necessary because of how getPointerToNamedFunction works around the
glibc libc_nonshared.a thing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182411 91177308-0d34-0410-b5e6-96231b3b80d8
the C API to provide their own way of allocating JIT memory (both code
and data) and finalizing memory permissions (page protections, cache
flush).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182408 91177308-0d34-0410-b5e6-96231b3b80d8
libExecutionEngine. Move method implementations that aren't specific to
allocation out of SectionMemoryManager and into RTDyldMemoryManager.
This is in preparation for exposing RTDyldMemoryManager through the C
API.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182407 91177308-0d34-0410-b5e6-96231b3b80d8
This resolves the last of the PR14606 failures in the GDB 7.5 test
suite by implementing an optional name field for
DW_TAG_imported_modules/DIImportedEntities and using that to implement
C++ namespace aliases (eg: "namespace X = Y;").
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182328 91177308-0d34-0410-b5e6-96231b3b80d8
Other passes, PPC counter-loop formation for example, also need to add loop
preheaders outside of the regular loop simplification pass. This makes
InsertPreheaderForLoop a global function so that it can be used by other
passes.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182299 91177308-0d34-0410-b5e6-96231b3b80d8
the JIT object (including XFAIL an ARM test that now needs fixing). Also renames
internal function for consistency.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182085 91177308-0d34-0410-b5e6-96231b3b80d8
This lane mask provides information about which register lanes
completely cover super-registers. See the block comment before
getCoveringLanes().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182034 91177308-0d34-0410-b5e6-96231b3b80d8
The old PPCCTRLoops pass, like the Hexagon pass version from which it was
derived, could only handle some simple loops in canonical form. We cannot
directly adapt the new Hexagon hardware loops pass, however, because the
Hexagon pass contains a fundamental assumption that non-constant-trip-count
loops will contain a guard, and this is not always true (the result being that
incorrect negative counts can be generated). With this commit, we replace the
pass with a late IR-level pass which makes use of SE to calculate the
backedge-taken counts and safely generate the loop-count expressions (including
any necessary max() parts). This IR level pass inserts custom intrinsics that
are lowered into the desired decrement-and-branch instructions.
The most fragile part of this new implementation is that interfering uses of
the counter register must be detected on the IR level (and, on PPC, this also
includes any indirect branches in addition to function calls). Also, to make
all of this work, we need a variant of the mtctr instruction that is marked
as having side effects. Without this, machine-code level CSE, DCE, etc.
illegally transform the resulting code. Hopefully, this can be improved
in the future.
This new pass is smaller than the original (and much smaller than the new
Hexagon hardware loops pass), and can handle many additional cases correctly.
In addition, the preheader-creation code has been copied from LoopSimplify, and
after we decide on where it belongs, this code will be refactored so that it
can be explicitly shared (making this implementation even smaller).
The new test-case files ctrloop-{le,lt,ne}.ll have been adapted from tests for
the new Hexagon pass. There are a few classes of loops that this pass does not
transform (noted by FIXMEs in the files), but these deficiencies can be
addressed within the SE infrastructure (thus helping many other passes as well).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181927 91177308-0d34-0410-b5e6-96231b3b80d8
We want the order to be deterministic on all platforms. NAKAMURA Takumi
fixed that in r181864. This patch is just two small cleanups:
* Move the function to the cpp file. It is only passed to array_pod_sort.
* Remove the ppc implementation which is now redundant
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181910 91177308-0d34-0410-b5e6-96231b3b80d8
Now that PowerPC no longer uses adjustFixupOffset, and no other
back-end (ever?) did, we can remove the infrastructure itself
(incidentally addressing a FIXME to that effect).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181895 91177308-0d34-0410-b5e6-96231b3b80d8
BitVector/SmallBitVector::reference::operator bool remain implicit since
they model more exactly a bool, rather than something else that can be
boolean tested.
The most common (non-buggy) case are where such objects are used as
return expressions in bool-returning functions or as boolean function
arguments. In those cases I've used (& added if necessary) a named
function to provide the equivalent (or sometimes negative, depending on
convenient wording) test.
One behavior change (YAMLParser) was made, though no test case is
included as I'm not sure how to reach that code path. Essentially any
comparison of llvm::yaml::document_iterators would be invalid if neither
iterator was at the end.
This helped uncover a couple of bugs in Clang - test cases provided for
those in a separate commit along with similar changes to `operator bool`
instances in Clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181868 91177308-0d34-0410-b5e6-96231b3b80d8
It should fix llvm/test/CodeGen/ARM/ehabi-mc-compact-pr*.ll on some hosts.
RELOCATION RECORDS FOR [.ARM.exidx]:
0 R_ARM_PREL31 .text
0 R_ARM_NONE __aeabi_unwind_cpp_pr0
FIXME: I am not sure of the directions of extra comparators, in Type and Index.
For now, they are different from the direction in r_offset.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181864 91177308-0d34-0410-b5e6-96231b3b80d8
EngineBuilder interface required a JITMemoryManager even if it was being used
to construct an MCJIT. But the MCJIT actually wants a RTDyldMemoryManager.
Consequently, the SectionMemoryManager, which is meant for MCJIT, derived
from the JITMemoryManager and then stubbed out a bunch of JITMemoryManager
methods that weren't relevant to the MCJIT.
This patch fixes the situation: it teaches the EngineBuilder that
RTDyldMemoryManager is a supertype of JITMemoryManager, and that it's
appropriate to pass a RTDyldMemoryManager instead of a JITMemoryManager if
we're using the MCJIT. This allows us to remove the stub methods from
SectionMemoryManager, and make SectionMemoryManager a direct subtype of
RTDyldMemoryManager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181820 91177308-0d34-0410-b5e6-96231b3b80d8
It was just a less powerful and more confusing version of
MCCFIInstruction. A side effect is that, since MCCFIInstruction uses
dwarf register numbers, calls to getDwarfRegNum are pushed out, which
should allow further simplifications.
I left the MachineModuleInfo::addFrameMove interface unchanged since
this patch was already fairly big.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181680 91177308-0d34-0410-b5e6-96231b3b80d8
To add a frame now there is a dedicated addFrameMove which also takes
care of constructing the move itself.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181657 91177308-0d34-0410-b5e6-96231b3b80d8