When trying to eliminate an "sub sp, sp, #N" instruction by folding
it into an existing push/pop using dummy registers, we need to account
for the fact that this might affect precisely how "fp" gets set in the
prologue.
We were attempting this, but assuming that *whenever* we performed a
fold it would make a difference. This is false, for example, in:
push {r4, r7, lr}
add fp, sp, #4
vpush {d8}
sub sp, sp, #8
we can fold the "sub" into the "vpush", forming "vpush {d7, d8}".
However, in that case the "add fp" instruction mustn't change, which
we were getting wrong before.
Should fix PR18160.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196725 91177308-0d34-0410-b5e6-96231b3b80d8
- krait processor currently modeled with the same features as A9.
- Krait processor additionally has VFP4 (fused multiply add/sub)
and hardware division features enabled.
- krait has currently the same Schedule model as A9
- krait cpu flag is not recognized by the GNU assembler yet,
it is replaced with march=armv7-a to avoid a lower march
from being used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196619 91177308-0d34-0410-b5e6-96231b3b80d8
The current peephole optimizing for compare inst assumes an instr that
uses CPSR has an MO for ARM Cond code.However, for VSEL instructions
(vseqeq, vselgt, vselgt, vselvs), there is no such operand nor do
they support the modification of Cond Code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196588 91177308-0d34-0410-b5e6-96231b3b80d8
We were trying to fold the stack adjustment into the wrong instruction in the
situation where the entire basic-block was epilogue code. Really, it can only
ever be valid to do the folding precisely where the "add sp, ..." would be
placed so there's no need for a separate iterator to track that.
Should fix PR18136.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196493 91177308-0d34-0410-b5e6-96231b3b80d8
This patch tries to avoid unrelated changes other than fixing a few
hyphen-related ambiguities and contractions in nearby lines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196471 91177308-0d34-0410-b5e6-96231b3b80d8
ARM symbol variants are written with parens instead of @ like this:
.word __GLOBAL_I_a(target1)
This commit adds support for parsing these symbol variants in
expressions. We introduce a new flag to MCAsmInfo that indicates the
parser should use parens to parse the symbol variant. The expression
parser is modified to look for symbol variants using parens instead
of @ when the corresponding MCAsmInfo flag is true.
The MCAsmInfo parens flag is enabled only for ARM on ELF.
By adding this flag to MCAsmInfo, we are able to get rid of
redundant ARM-specific symbol variants and use the generic variants
instead (e.g. VK_GOT instead of VK_ARM_GOT). We use the new
UseParensForSymbolVariant attribute in MCAsmInfo to correctly print
the symbol variants for arm.
To achive this we need to keep a handle to the MCAsmInfo in the
MCSymbolRefExpr class that we can check when printing the symbol
variant.
Updated Tests:
Changed case of symbol variant to match the generic kind.
test/CodeGen/ARM/tls-models.ll
test/CodeGen/ARM/tls1.ll
test/CodeGen/ARM/tls2.ll
test/CodeGen/Thumb2/tls1.ll
test/CodeGen/Thumb2/tls2.ll
PR18080
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196424 91177308-0d34-0410-b5e6-96231b3b80d8
MO_JumpTableIndex and MO_ExternalSymbol don't show up on inline asm.
Keeping parts of the old asm printer just to print inline asm to a string that
we then parse back looks like a hack.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196111 91177308-0d34-0410-b5e6-96231b3b80d8
These are used by MachO only at the moment, and (much like the existing
MOVW/MOVT set) work around the fact that the labels used in the actual
instructions often contain PC-dependent components, which means that repeatedly
materialising the same global can't be CSEed.
With small modifications, it could be adapted to how ELF finds the address of
_GLOBAL_OFFSET_TABLE_, which would give similar benefits in PIC mode there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196090 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, we clobbered callee-saved registers when folding an "add
sp, #N" into a "pop {rD, ...}" instruction. This change checks whether
a register we're going to add to the "pop" could actually be live
outside the function before doing so and should fix the issue.
This should fix PR18081.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196046 91177308-0d34-0410-b5e6-96231b3b80d8
I think, in principle, intrinsics_gen may be added explicitly.
That said, it can be added incidentally, since each target already has dependencies to llvm-tblgen.
Almost all source files depend on both CommonTaleGen and intrinsics_gen.
Explicit add_dependencies() have been pruned under lib/Target.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195929 91177308-0d34-0410-b5e6-96231b3b80d8
add_public_tablegen_target adds *CommonTableGen to LLVM_COMMON_DEPENDS.
LLVM_COMMON_DEPENDS affects add_llvm_library (and other add_target stuff) within its scope.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195927 91177308-0d34-0410-b5e6-96231b3b80d8
These are handled almost identically to static mode (and ELF's global address
materialisation), except that a symbol may have "$non_lazy_ptr" appended. This
can be handled by passing appropriate flags along with the instruction instead
of using entirely separate pseudo-instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195655 91177308-0d34-0410-b5e6-96231b3b80d8
There is no sane way for an LEApcrel (= single ADR) instruction to generate a
global address on any ARM target I know of. Fortunately, no-one was trying to
any more, but there were vestigial patterns.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195644 91177308-0d34-0410-b5e6-96231b3b80d8
<def,dead> ones.
Add an assertion to make sure we catch this in the future.
Fixes <rdar://problem/15464559>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195401 91177308-0d34-0410-b5e6-96231b3b80d8
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file. The memory leaks in this version have been fixed. Thanks
Alexey for pointing them out.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195064 91177308-0d34-0410-b5e6-96231b3b80d8
This change is incorrect. If you delete virtual destructor of both a base class
and a subclass, then the following code:
Base *foo = new Child();
delete foo;
will not cause the destructor for members of Child class. As a result, I observe
plently of memory leaks. Notable examples I investigated are:
ObjectBuffer and ObjectBufferStream, AttributeImpl and StringSAttributeImpl.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194997 91177308-0d34-0410-b5e6-96231b3b80d8
Stop folding constant adds into GEP when the type size doesn't match.
Otherwise, the adds' operands are effectively being promoted, changing the
conditions of an overflow. Results are different when:
sext(a) + sext(b) != sext(a + b)
Problem originally found on x86-64, but also fixed issues with ARM and PPC,
which used similar code.
<rdar://problem/15292280>
Patch by Duncan Exon Smith!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194840 91177308-0d34-0410-b5e6-96231b3b80d8
We used to perform an invalid operation on an MVT and crash, which wasn't much
fun.
Patch by Oliver Stannard.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194714 91177308-0d34-0410-b5e6-96231b3b80d8
By default, the behavior of IT block generation will be determinated
dynamically base on the arch (armv8 vs armv7). This patch adds backend
options: -arm-restrict-it and -arm-no-restrict-it. The former one
restricts the generation of IT blocks (the same behavior as thumbv8) for
both arches. The later one allows the generation of legacy IT block (the
same behavior as ARMv7 Thumb2) for both arches.
Clang will support -mrestrict-it and -mno-restrict-it, which is
compatible with GCC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194592 91177308-0d34-0410-b5e6-96231b3b80d8
The system LDM and STM instructions can't usually writeback to the base
register. The one exception is when an LDM is actually an exception-return
(i.e. contains PC in the register list).
(There's already a test that "ldm sp!, {r0-r3, pc}^" works, which is why there
is no positive test).
rdar://problem/15223374
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194512 91177308-0d34-0410-b5e6-96231b3b80d8
This commit cleans up some comments in ARMBuildAttrs.h.
Besides, this commit fixes an error related to AllowWMMXv1
and AllowWMMXv2 (although they are not used currently.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194327 91177308-0d34-0410-b5e6-96231b3b80d8
ARM prologues usually look like:
push {r7, lr}
sub sp, sp, #4
If code size is extremely important, this can be optimised to the single
instruction:
push {r6, r7, lr}
where we don't actually care about the contents of r6, but pushing it subtracts
4 from sp as a side effect.
This should implement such a conversion, predicated on the "minsize" function
attribute (-Oz) since I've yet to find any code it actually makes faster.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194264 91177308-0d34-0410-b5e6-96231b3b80d8
Cortex-M0 supports these 32-bit instructions despite being Thumb1 only
(mostly). We knew about that but not that the aliases without the default "sy"
operand were also permitted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194094 91177308-0d34-0410-b5e6-96231b3b80d8
ResolveFrameIndex had what appeared to be a very nasty hack for when the
frame-index referred to a callee-saved register. In this case it "adjusted" the
offset so that the address was correct if (and only if) the MachineInstr
immediately followed the respective push.
This "worked" for all forms of GPR & DPR but was only ever used to set the
frame pointer itself, and once this was put in a more sensible location the
entire state-tracking machinery it relied on became redundant. So I stripped
it.
The only wrinkle is that "add r7, sp, #0" might theoretically be slower (need
an actual ALU slot) compared to "mov r7, sp" so I added a micro-optimisation
that also makes emitARMRegUpdate and emitT2RegUpdate also work when NumBytes ==
0.
No test changes since there shouldn't be any functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194025 91177308-0d34-0410-b5e6-96231b3b80d8