load / store pair. It's not legal to use a wider load than the size of
the remaining bytes if it's the first pair of load / store.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170018 91177308-0d34-0410-b5e6-96231b3b80d8
mention the inline memcpy / memset expansion code is a mess?
This patch split the ZeroOrLdSrc argument into two: IsMemset and ZeroMemset.
The first indicates whether it is expanding a memset or a memcpy / memmove.
The later is whether the memset is a memset of zero. It's totally possible
(likely even) that targets may want to do different things for memcpy and
memset of zero.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169959 91177308-0d34-0410-b5e6-96231b3b80d8
Also added more comments to explain why it is generally ok to return true.
- Rename getOptimalMemOpType argument IsZeroVal to ZeroOrLdSrc. It's meant to
be true for loaded source (memcpy) or zero constants (memset). The poor name
choice is probably some kind of legacy issue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169954 91177308-0d34-0410-b5e6-96231b3b80d8
ScalarTargetTransformInfo::getIntImmCost() instead. "Legal" is a poorly defined
term for something like integer immediate materialization. It is always possible
to materialize an integer immediate. Whether to use it for memcpy expansion is
more a "cost" conceern.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169929 91177308-0d34-0410-b5e6-96231b3b80d8
Accordingly, add helper funtions getSimpleValueType (in parallel to
getValueType) in SDValue, SDNode, and TargetLowering.
This is the first, in a series of patches.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169837 91177308-0d34-0410-b5e6-96231b3b80d8
try to reduce the width of this load, and would end up transforming:
(truncate (lshr (sextload i48 <ptr> as i64), 32) to i32)
to
(truncate (zextload i32 <ptr+4> as i64) to i32)
We lost the sext attached to the load while building the narrower i32
load, and replaced it with a zext because lshr always zext's the
results. Instead, bail out of this combine when there is a conflict
between a sextload and a zext narrowing. The rest of the DAG combiner
still optimize the code down to the proper single instruction:
movswl 6(...),%eax
Which is exactly what we wanted. Previously we read past the end *and*
missed the sign extension:
movl 6(...), %eax
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169802 91177308-0d34-0410-b5e6-96231b3b80d8
This shouldn't affect codegen for -O0 compiles as tail call markers are not
emitted in unoptimized compiles. Testing with the external/internal nightly
test suite reveals no change in compile time performance. Testing with -O1,
-O2 and -O3 with fast-isel enabled did not cause any compile-time or
execution-time failures. All tests were performed on my x86 machine.
I'll monitor our arm testers to ensure no regressions occur there.
In an upcoming clang patch I will be marking the objc_autoreleaseReturnValue
and objc_retainAutoreleaseReturnValue as tail calls unconditionally. While
it's theoretically true that this is just an optimization, it's an
optimization that we very much want to happen even at -O0, or else ARC
applications become substantially harder to debug.
Part of rdar://12553082
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169796 91177308-0d34-0410-b5e6-96231b3b80d8
controls each of the abbreviation sets (only a single one at the
moment) and computes offsets separately as well for each set
of DIEs.
No real function change, ordering of abbreviations for the skeleton
CU changed but only because we're computing in a separate order. Fix
the testcase not to care.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169793 91177308-0d34-0410-b5e6-96231b3b80d8
1. Teach it to use overlapping unaligned load / store to copy / set the trailing
bytes. e.g. On 86, use two pairs of movups / movaps for 17 - 31 byte copies.
2. Use f64 for memcpy / memset on targets where i64 is not legal but f64 is. e.g.
x86 and ARM.
3. When memcpy from a constant string, do *not* replace the load with a constant
if it's not possible to materialize an integer immediate with a single
instruction (required a new target hook: TLI.isIntImmLegal()).
4. Use unaligned load / stores more aggressively if target hooks indicates they
are "fast".
5. Update ARM target hooks to use unaligned load / stores. e.g. vld1.8 / vst1.8.
Also increase the threshold to something reasonable (8 for memset, 4 pairs
for memcpy).
This significantly improves Dhrystone, up to 50% on ARM iOS devices.
rdar://12760078
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169791 91177308-0d34-0410-b5e6-96231b3b80d8
InitSections is called before the MCContext is initialized it could cause
duplicate temporary symbols to be emitted later (after context initialization
resets the temporary label counter).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169785 91177308-0d34-0410-b5e6-96231b3b80d8
misched used GetUnderlyingObject in order to break false load/store
dependencies, and the -enable-aa-sched-mi feature similarly relied on
GetUnderlyingObject in order to ensure it is safe to use the aliasing analysis.
Unfortunately, GetUnderlyingObject does not recurse through phi nodes, and so
(especially due to LSR) all of these mechanisms failed for
induction-variable-dependent loads and stores inside loops.
This change replaces uses of GetUnderlyingObject with GetUnderlyingObjects
(which will recurse through phi and select instructions) in misched.
Andy reviewed, tested and simplified this patch; Thanks!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169744 91177308-0d34-0410-b5e6-96231b3b80d8
This is still a work in progress. The purpose is to make bundling and
unbundling operations explicit, and to catch errors where bundles are
broken or created inadvertently.
The old IsInsideBundle flag is replaced by two MI flags: BundledPred
which has the same meaning as IsInsideBundle, and BundledSucc which is
set on instructions that are bundled with a successor. Having two flags
provdes redundancy to detect when a bundle is inadvertently torn by a
splice() or insert(), and it makes it possible to write bundle iterators
that don't need to peek at adjacent instructions.
The new flags can't be manipulated directly (once setIsInsideBundle is
gone). Instead there are MI functions to make and break bundle bonds.
The setIsInsideBundle function will be removed in a future commit. It
should be replaced by bundleWithPred().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169583 91177308-0d34-0410-b5e6-96231b3b80d8
original change description:
change MCContext to work on the doInitialization/doFinalization model
reviewed by Evan Cheng <evan.cheng@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169553 91177308-0d34-0410-b5e6-96231b3b80d8
understand target implementation of any_extend / extload, just generate
zero_extend in place of any_extend for liveouts when the target knows the
zero_extend will be implicit (e.g. ARM ldrb / ldrh) or folded (e.g. x86 movz).
rdar://12771555
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169536 91177308-0d34-0410-b5e6-96231b3b80d8
check if loads that happen in between stores alias with the first store in the
chain, only with the second store onwards.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169516 91177308-0d34-0410-b5e6-96231b3b80d8
Some languages, e.g. Ada and Pascal, allow you to specify that the array bounds
are different from the default (1 in these cases). If we have a lower bound
that's non-default, then we emit the lower bound. We also calculate the correct
upper bound in those cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169484 91177308-0d34-0410-b5e6-96231b3b80d8
This is much simpler to reason about, more efficient, and
fixes some corner cases involving implicit super-register defs.
Fixed rdar://12797931.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169425 91177308-0d34-0410-b5e6-96231b3b80d8
A MachineInstr can only ever be constructed by CreateMachineInstr() and
CloneMachineInstr(), and those factories don't use the removed
constructors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169395 91177308-0d34-0410-b5e6-96231b3b80d8
- fixed ordering of calls to doFinalization to be the reverse of the pass run order due to potential dependencies
- fixed machine module info to operate in the doInitialization/doFinalization model, also fixes some FIXMEs
reviewed by Evan Cheng <evan.cheng@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169391 91177308-0d34-0410-b5e6-96231b3b80d8
The count attribute is more accurate with regards to the size of an array. It
also obviates the upper bound attribute in the subrange. We can also better
handle an unbound array by setting the count to -1 instead of the lower bound to
1 and upper bound to 0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169312 91177308-0d34-0410-b5e6-96231b3b80d8
This reapplies the fix for PR13303 now with more justification. Based on my
execution of the GDB 7.5 test suite this results in:
expected passes: 16101 -> 20890 (+30%)
unexpected failures: 4826 -> 637 (-77%)
There are 23 checks that used to pass and now fail. They are all in
gdb.reverse. Investigating a few looks like they were accidentally passing
due to extra breakpoints being set by this bug. They're generally due to the
difference in end location between gcc and clang, the test suite is trying to
set breakpoints on the closing '}' that clang doesn't associate with any
instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169304 91177308-0d34-0410-b5e6-96231b3b80d8
missed in the first pass because the script didn't yet handle include
guards.
Note that the script is now able to handle all of these headers without
manual edits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169224 91177308-0d34-0410-b5e6-96231b3b80d8
The count field is necessary because there isn't a difference between the 'lo'
and 'hi' attributes for a one-element array and a zero-element array. When the
count is '0', we know that this is a zero-element array. When it's >=1, then
it's a normal constant sized array. When it's -1, then the array is unbounded.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169218 91177308-0d34-0410-b5e6-96231b3b80d8
the alignment is clamped to TargetFrameLowering.getStackAlignment if the target
does not support stack realignment or the option "realign-stack" is off.
This will cause miscompile if the address is treated as aligned and add is
replaced with or in DAGCombine.
Added a bool StackRealignable to TargetFrameLowering to check whether stack
realignment is implemented for the target. Also added a bool RealignOption
to MachineFrameInfo to check whether the option "realign-stack" is on.
rdar://12713765
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169197 91177308-0d34-0410-b5e6-96231b3b80d8
Now that there can be multiple hint registers from targets, it doesn't
make sense to have a function that returns 'the' preferred register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169190 91177308-0d34-0410-b5e6-96231b3b80d8
Targets can provide multiple hints now, so getRegAllocPref() doesn't
make sense any longer because it only returns one preferred register.
Replace it with getSimpleHint() in the remaining heuristics. This
function only
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169188 91177308-0d34-0410-b5e6-96231b3b80d8
No functional change for this commit. The follow-up patch will add more stuff to
these functions.
rdar://12713765
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169186 91177308-0d34-0410-b5e6-96231b3b80d8
Virtual registers with a known preferred register are prioritized by
RAGreedy. This function makes the condition explicit without depending
on getRegAllocPref().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169179 91177308-0d34-0410-b5e6-96231b3b80d8
This simplifies the hinting code quite a bit while making the targets
easier to write at the same time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169173 91177308-0d34-0410-b5e6-96231b3b80d8
The TargetRegisterInfo::getRegAllocationHints() function is going to
replace the existing mechanisms for providing target-dependent hints to
the register allocator: ResolveRegAllocHint() and
getRawAllocationOrder().
The new hook is more flexible because it allows the target to provide
multiple preferred candidate registers for each virtual register, and it
is easier to use because targets are not required to return a reference
to a constant array like getRawAllocationOrder().
An optional VirtRegMap argument can be used to provide target-dependent
hints that depend on the provisional assignments of other virtual
registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169154 91177308-0d34-0410-b5e6-96231b3b80d8
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
The TwoAddressInstructionPass takes the machine code out of SSA form by
expanding REG_SEQUENCE instructions into copies. It is no longer
necessary to rewrite the registers used by a REG_SEQUENCE instruction
because the new coalescer algorithm can do it now.
REG_SEQUENCE is just converted to a sequence of sub-register copies now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169067 91177308-0d34-0410-b5e6-96231b3b80d8
part of the compile unit CU and start separating out information into
the various sections that will be pulled out later.
WIP.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169061 91177308-0d34-0410-b5e6-96231b3b80d8
MachineCopyPropagation doesn't understand super-register liveness well
enough to be able to remove implicit defs of super-registers.
This fixes a problem in ARM/2012-01-26-CopyPropKills.ll that is exposed
by an future TwoAddressInstructionPass change. The KILL instructions are
removed before the machine code is emitted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169060 91177308-0d34-0410-b5e6-96231b3b80d8
The original patch removed a bunch of code that the SjLjEHPrepare pass placed
into the entry block if all of the landing pads were removed during the
CodeGenPrepare class. The more natural way of doing things is to run the CGP
*before* we run the SjLjEHPrepare pass.
Make it so!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169044 91177308-0d34-0410-b5e6-96231b3b80d8
This was found by MSVC10's STL debug mode on a test from the test suite. Sadly
std::is_heap isn't standard so there is no way to assert this without writing
our own heap verify, which looks like overkill to me.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168885 91177308-0d34-0410-b5e6-96231b3b80d8
If we need to split the operand of a VSELECT, it must be the mask operand. We
split the entire VSELECT operand with EXTRACT_SUBVECTOR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168883 91177308-0d34-0410-b5e6-96231b3b80d8
For some targets, it is desirable to prefer scalarizing <N x i1> instead of promoting to a larger legal type, such as <N x i32>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168882 91177308-0d34-0410-b5e6-96231b3b80d8
This could cause miscompilations in targets where sub-register
composition is not always idempotent (ARM).
<rdar://problem/12758887>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168837 91177308-0d34-0410-b5e6-96231b3b80d8
No functional change, just moved header files.
Targets can inject custom passes between register allocation and
rewriting. This makes it possible to tweak the register allocation
before rewriting, using the full global interference checking available
from LiveRegMatrix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168806 91177308-0d34-0410-b5e6-96231b3b80d8
This is a simple, cheap infrastructure for analyzing the shape of a
DAG. It recognizes uniform DAGs that take the shape of bottom-up
subtrees, such as the included matrix multiplication example. This is
useful for heuristics that balance register pressure with ILP. Two
canonical expressions of the heuristic are implemented in scheduling
modes: -misched-ilpmin and -misched-ilpmax.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168773 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a hole in the "cheap" alias analysis logic implemented within
the DAG builder itself, regardless of whether proper alias analysis is
enabled. It now handles this pattern produced by LSR+CodeGenPrepare.
%sunkaddr1 = ptrtoint * %obj to i64
%sunkaddr2 = add i64 %sunkaddr1, %lsr.iv
%sunkaddr3 = inttoptr i64 %sunkaddr2 to i32*
store i32 %v, i32* %sunkaddr3
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168768 91177308-0d34-0410-b5e6-96231b3b80d8
The Target library is not allowed to depend on the large CodeGen
library, but the TRI and TII classes provide abstract interfaces that
require both caller and callee to link to CodeGen.
The implementation files for these classes provide default
implementations of some of the hooks. These methods may need to
reference CodeGen, so they belong in that library.
We already have a number of methods implemented in the
TargetInstrInfoImpl sub-class because of that. I will merge that class
into the parent next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168758 91177308-0d34-0410-b5e6-96231b3b80d8