mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-02-25 03:30:37 +00:00
A broken hint is a copy where both ends are assigned different colors. When a variable gets evicted in the neighborhood of such copies, it is likely we can reconcile some of them. ** Context ** Copies are inserted during the register allocation via splitting. These split points are required to relax the constraints on the allocation problem. When such a point is inserted, both ends of the copy would not share the same color with respect to the current allocation problem. When variables get evicted, the allocation problem becomes different and some split point may not be required anymore. However, the related variables may already have been colored. This usually shows up in the assembly with pattern like this: def A ... save A to B def A use A restore A from B ... use B Whereas we could simply have done: def B ... def A use A ... use B ** Proposed Solution ** A variable having a broken hint is marked for late recoloring if and only if selecting a register for it evict another variable. Indeed, if no eviction happens this is pointless to look for recoloring opportunities as it means the situation was the same as the initial allocation problem where we had to break the hint. Finally, when everything has been allocated, we look for recoloring opportunities for all the identified candidates. The recoloring is performed very late to rely on accurate copy cost (all involved variables are allocated). The recoloring is simple unlike the last change recoloring. It propagates the color of the broken hint to all its copy-related variables. If the color is available for them, the recoloring uses it, otherwise it gives up on that hint even if a more complex coloring would have worked. The recoloring happens only if it is profitable. The profitability is evaluated using the expected frequency of the copies of the currently recolored variable with a) its current color and b) with the target color. If a) is greater or equal than b), then it is profitable and the recoloring happen. ** Example ** Consider the following example: BB1: a = b = BB2: ... = b = a Let us assume b gets split: BB1: a = b = BB2: c = b ... d = c = d = a Because of how the allocation work, b, c, and d may be assigned different colors. Now, if a gets evicted to make room for c, assuming b and d were assigned to something different than a. We end up with: BB1: a = st a, SpillSlot b = BB2: c = b ... d = c = d e = ld SpillSlot = e This is likely that we can assign the same register for b, c, and d, getting rid of 2 copies. ** Performances ** Both ARM64 and x86_64 show performance improvements of up to 3% for the llvm-testsuite + externals with Os and O3. There are a few regressions too that comes from the (in)accuracy of the block frequency estimate. <rdar://problem/18312047> git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225422 91177308-0d34-0410-b5e6-96231b3b80d8
//===---------------------------------------------------------------------===// Common register allocation / spilling problem: mul lr, r4, lr str lr, [sp, #+52] ldr lr, [r1, #+32] sxth r3, r3 ldr r4, [sp, #+52] mla r4, r3, lr, r4 can be: mul lr, r4, lr mov r4, lr str lr, [sp, #+52] ldr lr, [r1, #+32] sxth r3, r3 mla r4, r3, lr, r4 and then "merge" mul and mov: mul r4, r4, lr str r4, [sp, #+52] ldr lr, [r1, #+32] sxth r3, r3 mla r4, r3, lr, r4 It also increase the likelihood the store may become dead. //===---------------------------------------------------------------------===// bb27 ... ... %reg1037 = ADDri %reg1039, 1 %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10 Successors according to CFG: 0x8b03bf0 (#5) bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5): Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4) %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0> Note ADDri is not a two-address instruction. However, its result %reg1037 is an operand of the PHI node in bb76 and its operand %reg1039 is the result of the PHI node. We should treat it as a two-address code and make sure the ADDri is scheduled after any node that reads %reg1039. //===---------------------------------------------------------------------===// Use local info (i.e. register scavenger) to assign it a free register to allow reuse: ldr r3, [sp, #+4] add r3, r3, #3 ldr r2, [sp, #+8] add r2, r2, #2 ldr r1, [sp, #+4] <== add r1, r1, #1 ldr r0, [sp, #+4] add r0, r0, #2 //===---------------------------------------------------------------------===// LLVM aggressively lift CSE out of loop. Sometimes this can be negative side- effects: R1 = X + 4 R2 = X + 7 R3 = X + 15 loop: load [i + R1] ... load [i + R2] ... load [i + R3] Suppose there is high register pressure, R1, R2, R3, can be spilled. We need to implement proper re-materialization to handle this: R1 = X + 4 R2 = X + 7 R3 = X + 15 loop: R1 = X + 4 @ re-materialized load [i + R1] ... R2 = X + 7 @ re-materialized load [i + R2] ... R3 = X + 15 @ re-materialized load [i + R3] Furthermore, with re-association, we can enable sharing: R1 = X + 4 R2 = X + 7 R3 = X + 15 loop: T = i + X load [T + 4] ... load [T + 7] ... load [T + 15] //===---------------------------------------------------------------------===// It's not always a good idea to choose rematerialization over spilling. If all the load / store instructions would be folded then spilling is cheaper because it won't require new live intervals / registers. See 2003-05-31-LongShifts for an example. //===---------------------------------------------------------------------===// With a copying garbage collector, derived pointers must not be retained across collector safe points; the collector could move the objects and invalidate the derived pointer. This is bad enough in the first place, but safe points can crop up unpredictably. Consider: %array = load { i32, [0 x %obj] }** %array_addr %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n %old = load %obj** %nth_el %z = div i64 %x, %y store %obj* %new, %obj** %nth_el If the i64 division is lowered to a libcall, then a safe point will (must) appear for the call site. If a collection occurs, %array and %nth_el no longer point into the correct object. The fix for this is to copy address calculations so that dependent pointers are never live across safe point boundaries. But the loads cannot be copied like this if there was an intervening store, so may be hard to get right. Only a concurrent mutator can trigger a collection at the libcall safe point. So single-threaded programs do not have this requirement, even with a copying collector. Still, LLVM optimizations would probably undo a front-end's careful work. //===---------------------------------------------------------------------===// The ocaml frametable structure supports liveness information. It would be good to support it. //===---------------------------------------------------------------------===// The FIXME in ComputeCommonTailLength in BranchFolding.cpp needs to be revisited. The check is there to work around a misuse of directives in inline assembly. //===---------------------------------------------------------------------===// It would be good to detect collector/target compatibility instead of silently doing the wrong thing. //===---------------------------------------------------------------------===// It would be really nice to be able to write patterns in .td files for copies, which would eliminate a bunch of explicit predicates on them (e.g. no side effects). Once this is in place, it would be even better to have tblgen synthesize the various copy insertion/inspection methods in TargetInstrInfo. //===---------------------------------------------------------------------===// Stack coloring improvements: 1. Do proper LiveStackAnalysis on all stack objects including those which are not spill slots. 2. Reorder objects to fill in gaps between objects. e.g. 4, 1, <gap>, 4, 1, 1, 1, <gap>, 4 => 4, 1, 1, 1, 1, 4, 4 //===---------------------------------------------------------------------===// The scheduler should be able to sort nearby instructions by their address. For example, in an expanded memset sequence it's not uncommon to see code like this: movl $0, 4(%rdi) movl $0, 8(%rdi) movl $0, 12(%rdi) movl $0, 0(%rdi) Each of the stores is independent, and the scheduler is currently making an arbitrary decision about the order. //===---------------------------------------------------------------------===// Another opportunitiy in this code is that the $0 could be moved to a register: movl $0, 4(%rdi) movl $0, 8(%rdi) movl $0, 12(%rdi) movl $0, 0(%rdi) This would save substantial code size, especially for longer sequences like this. It would be easy to have a rule telling isel to avoid matching MOV32mi if the immediate has more than some fixed number of uses. It's more involved to teach the register allocator how to do late folding to recover from excessive register pressure.