llvm-6502/lib/CodeGen
Eric Christopher 3788687f31 Access the subtarget off of the MachineFunction rather than
through the TargetMachine.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219661 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-14 06:26:53 +00:00
..
AsmPrinter Add an assertion about the integrity of the iterator. 2014-10-13 20:44:58 +00:00
SelectionDAG constify the getters in SDNodeDbgValue. 2014-10-13 20:43:47 +00:00
AggressiveAntiDepBreaker.cpp Reduce double set lookups. NFC. 2014-10-10 15:32:50 +00:00
AggressiveAntiDepBreaker.h mop up: "Don’t duplicate function or class name at the beginning of the comment." 2014-09-21 14:48:16 +00:00
AllocationOrder.cpp
AllocationOrder.h
Analysis.cpp
AntiDepBreaker.h mop up: "Don’t duplicate function or class name at the beginning of the comment." 2014-09-21 14:48:16 +00:00
AtomicExpandPass.cpp Lower idempotent RMWs to fence+load 2014-09-25 17:27:43 +00:00
BasicTargetTransformInfo.cpp Add a new pass FunctionTargetTransformInfo. This pass serves as a 2014-09-18 00:34:14 +00:00
BranchFolding.cpp
BranchFolding.h
CalcSpillWeights.cpp
CallingConvLower.cpp
CMakeLists.txt [MCJIT] Nuke MachineRelocation and MachineCodeEmitter. Now that the old JIT is 2014-09-23 18:08:47 +00:00
CodeGen.cpp Rename AtomicExpandLoadLinked into AtomicExpand 2014-08-21 21:50:01 +00:00
CodeGenPrepare.cpp [CodeGenPrepare][AddressingModeMatcher] The promotion mechanism was expecting 2014-09-16 22:36:07 +00:00
CriticalAntiDepBreaker.cpp critical-anti-dependency breaker: don't use reg def info from kill insts (PR20308) 2014-08-20 18:03:00 +00:00
CriticalAntiDepBreaker.h mop up: "Don’t duplicate function or class name at the beginning of the comment." 2014-09-21 14:48:16 +00:00
DeadMachineInstructionElim.cpp
DFAPacketizer.cpp Remove the TargetMachine from DFAPacketizer since it was only 2014-10-14 01:03:16 +00:00
DwarfEHPrepare.cpp In DwarfEHPrepare, after all passes are run, RewindFunction may be a dangling 2014-09-14 20:36:28 +00:00
EarlyIfConversion.cpp Change MCSchedModel to be a struct of statically initialized data. 2014-09-02 17:43:54 +00:00
EdgeBundles.cpp
ErlangGC.cpp
ExecutionDepsFix.cpp
ExpandISelPseudos.cpp
ExpandPostRAPseudos.cpp
GCMetadata.cpp
GCMetadataPrinter.cpp
GCStrategy.cpp
GlobalMerge.cpp
IfConversion.cpp Change MCSchedModel to be a struct of statically initialized data. 2014-09-02 17:43:54 +00:00
InlineSpiller.cpp Move the complex address expression out of DIVariable and into an extra 2014-10-01 18:55:02 +00:00
InterferenceCache.cpp
InterferenceCache.h
IntrinsicLowering.cpp [PATCH][Interpreter] Add missing FP intrinsic lowering. 2014-08-30 18:33:35 +00:00
JumpInstrTables.cpp
LatencyPriorityQueue.cpp
LexicalScopes.cpp Revert "DebugInfo: Ensure that all debug location scope chains from instructions within a function, lead to the function itself." 2014-10-10 18:46:21 +00:00
LiveDebugVariables.cpp Move the complex address expression out of DIVariable and into an extra 2014-10-01 18:55:02 +00:00
LiveDebugVariables.h
LiveInterval.cpp
LiveIntervalAnalysis.cpp Access the subtarget off of the MachineFunction rather than 2014-10-14 06:26:53 +00:00
LiveIntervalUnion.cpp
LivePhysRegs.cpp
LiveRangeCalc.cpp
LiveRangeCalc.h
LiveRangeEdit.cpp
LiveRegMatrix.cpp
LiveStackAnalysis.cpp
LiveVariables.cpp CodeGen/LiveVariables: use vector::assign() 2014-08-26 02:03:25 +00:00
LLVMBuild.txt
LLVMTargetMachine.cpp Reinstate "Nuke the old JIT." 2014-09-02 22:28:02 +00:00
LocalStackSlotAllocation.cpp
MachineBasicBlock.cpp
MachineBlockFrequencyInfo.cpp
MachineBlockPlacement.cpp
MachineBranchProbabilityInfo.cpp
MachineCombiner.cpp Change MCSchedModel to be a struct of statically initialized data. 2014-09-02 17:43:54 +00:00
MachineCopyPropagation.cpp
MachineCSE.cpp
MachineDominanceFrontier.cpp
MachineDominators.cpp
MachineFunction.cpp Replace calls to get the subtarget and TargetFrameLowering with 2014-10-08 08:46:34 +00:00
MachineFunctionAnalysis.cpp
MachineFunctionPass.cpp
MachineFunctionPrinterPass.cpp
MachineInstr.cpp Revert "Revert "DI: Fold constant arguments into a single MDString"" 2014-10-03 20:01:09 +00:00
MachineInstrBundle.cpp
MachineLICM.cpp Eliminate some deep std::vector copies. NFC. 2014-10-03 18:33:16 +00:00
MachineLoopInfo.cpp
MachineModuleInfo.cpp
MachineModuleInfoImpls.cpp
MachinePassRegistry.cpp
MachinePostDominators.cpp
MachineRegionInfo.cpp
MachineRegisterInfo.cpp CodeGen: switch raw array to std::vector 2014-08-25 00:28:31 +00:00
MachineScheduler.cpp [MiSched] Fix a logic error in tryPressure() 2014-10-10 17:06:20 +00:00
MachineSink.cpp Revert r216862 due to a performance regression 2014-10-01 15:22:13 +00:00
MachineSSAUpdater.cpp
MachineTraceMetrics.cpp Change MCSchedModel to be a struct of statically initialized data. 2014-09-02 17:43:54 +00:00
MachineVerifier.cpp Modernize raw_fd_ostream's constructor a bit. 2014-08-25 18:16:47 +00:00
Makefile
module.modulemap
OcamlGC.cpp
OptimizePHIs.cpp
Passes.cpp Add pass-manager flags to use CFL AA 2014-09-02 22:12:54 +00:00
PeepholeOptimizer.cpp [PeepholeOptimizer] Enable the advanced copy optimization by default. 2014-08-21 22:23:52 +00:00
PHIElimination.cpp Use range based for loops to avoid needing to re-mention SmallPtrSet size. 2014-08-24 23:23:06 +00:00
PHIEliminationUtils.cpp
PHIEliminationUtils.h
PostRASchedulerList.cpp Cleanup: Delete seemingly unused reference to MachineDominatorTree from ScheduleDAGInstrs. 2014-08-20 20:57:26 +00:00
ProcessImplicitDefs.cpp
PrologEpilogInserter.cpp Use range based for loops to avoid needing to re-mention SmallPtrSet size. 2014-08-24 23:23:06 +00:00
PrologEpilogInserter.h
PseudoSourceValue.cpp
README.txt
RegAllocBase.cpp
RegAllocBase.h
RegAllocBasic.cpp
RegAllocFast.cpp Move the complex address expression out of DIVariable and into an extra 2014-10-01 18:55:02 +00:00
RegAllocGreedy.cpp Revert 202433 - Provide a target override for the latest regalloc heuristic 2014-10-03 12:20:53 +00:00
RegAllocPBQP.cpp [PBQP] Replace PBQPBuilder with composable constraints (PBQPRAConstraint). 2014-10-09 18:20:51 +00:00
RegisterClassInfo.cpp
RegisterCoalescer.cpp delete function names from comments 2014-10-09 21:24:46 +00:00
RegisterCoalescer.h mop up: "Don’t duplicate function or class name at the beginning of the comment." 2014-09-20 22:39:16 +00:00
RegisterPressure.cpp
RegisterScavenging.cpp
ScheduleDAG.cpp
ScheduleDAGInstrs.cpp Remove an unnecessary restriction. MIsNeedChainEdge() should be checked even when scheduler AliasAnalysis is not 2014-09-12 21:17:55 +00:00
ScheduleDAGPrinter.cpp
ScoreboardHazardRecognizer.cpp Change MCSchedModel to be a struct of statically initialized data. 2014-09-02 17:43:54 +00:00
ShadowStackGC.cpp
SjLjEHPrepare.cpp Use range based for loops to avoid needing to re-mention SmallPtrSet size. 2014-08-24 23:23:06 +00:00
SlotIndexes.cpp
Spiller.cpp
Spiller.h
SpillPlacement.cpp Fix the threshold added in r186434 (a re-apply of r185393) and updaated 2014-10-02 22:23:14 +00:00
SpillPlacement.h Fix the threshold added in r186434 (a re-apply of r185393) and updaated 2014-10-02 22:23:14 +00:00
SplitKit.cpp
SplitKit.h
StackColoring.cpp Fix typos in comments, NFC 2014-08-29 21:53:01 +00:00
StackMapLivenessAnalysis.cpp
StackMaps.cpp Remove unnecessary copying or replace it with moves in a bunch of places. 2014-10-04 16:55:56 +00:00
StackProtector.cpp
StackSlotColoring.cpp
TailDuplication.cpp
TargetFrameLoweringImpl.cpp
TargetInstrInfo.cpp Fix a lot of confusion around inserting nops on empty functions. 2014-09-15 18:32:58 +00:00
TargetLoweringBase.cpp Reinstate "Nuke the old JIT." 2014-09-02 22:28:02 +00:00
TargetLoweringObjectFileImpl.cpp MC: ReadOnlyWithRel section kinds should map to rdata in COFF 2014-09-22 20:39:23 +00:00
TargetOptionsImpl.cpp
TargetRegisterInfo.cpp
TargetSchedule.cpp Change MCSchedModel to be a struct of statically initialized data. 2014-09-02 17:43:54 +00:00
TwoAddressInstructionPass.cpp
UnreachableBlockElim.cpp Use range based for loops to avoid needing to re-mention SmallPtrSet size. 2014-08-24 23:23:06 +00:00
VirtRegMap.cpp Migrate another set of getSubtargetImpl away. 2014-10-13 21:57:44 +00:00

//===---------------------------------------------------------------------===//

Common register allocation / spilling problem:

        mul lr, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        ldr r4, [sp, #+52]
        mla r4, r3, lr, r4

can be:

        mul lr, r4, lr
        mov r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

and then "merge" mul and mov:

        mul r4, r4, lr
        str r4, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

It also increase the likelihood the store may become dead.

//===---------------------------------------------------------------------===//

bb27 ...
        ...
        %reg1037 = ADDri %reg1039, 1
        %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10
    Successors according to CFG: 0x8b03bf0 (#5)

bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5):
    Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4)
        %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0>

Note ADDri is not a two-address instruction. However, its result %reg1037 is an
operand of the PHI node in bb76 and its operand %reg1039 is the result of the
PHI node. We should treat it as a two-address code and make sure the ADDri is
scheduled after any node that reads %reg1039.

//===---------------------------------------------------------------------===//

Use local info (i.e. register scavenger) to assign it a free register to allow
reuse:
        ldr r3, [sp, #+4]
        add r3, r3, #3
        ldr r2, [sp, #+8]
        add r2, r2, #2
        ldr r1, [sp, #+4]  <==
        add r1, r1, #1
        ldr r0, [sp, #+4]
        add r0, r0, #2

//===---------------------------------------------------------------------===//

LLVM aggressively lift CSE out of loop. Sometimes this can be negative side-
effects:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
load [i + R1]
...
load [i + R2]
...
load [i + R3]

Suppose there is high register pressure, R1, R2, R3, can be spilled. We need
to implement proper re-materialization to handle this:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
R1 = X + 4  @ re-materialized
load [i + R1]
...
R2 = X + 7 @ re-materialized
load [i + R2]
...
R3 = X + 15 @ re-materialized
load [i + R3]

Furthermore, with re-association, we can enable sharing:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
T = i + X
load [T + 4]
...
load [T + 7]
...
load [T + 15]
//===---------------------------------------------------------------------===//

It's not always a good idea to choose rematerialization over spilling. If all
the load / store instructions would be folded then spilling is cheaper because
it won't require new live intervals / registers. See 2003-05-31-LongShifts for
an example.

//===---------------------------------------------------------------------===//

With a copying garbage collector, derived pointers must not be retained across
collector safe points; the collector could move the objects and invalidate the
derived pointer. This is bad enough in the first place, but safe points can
crop up unpredictably. Consider:

        %array = load { i32, [0 x %obj] }** %array_addr
        %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n
        %old = load %obj** %nth_el
        %z = div i64 %x, %y
        store %obj* %new, %obj** %nth_el

If the i64 division is lowered to a libcall, then a safe point will (must)
appear for the call site. If a collection occurs, %array and %nth_el no longer
point into the correct object.

The fix for this is to copy address calculations so that dependent pointers
are never live across safe point boundaries. But the loads cannot be copied
like this if there was an intervening store, so may be hard to get right.

Only a concurrent mutator can trigger a collection at the libcall safe point.
So single-threaded programs do not have this requirement, even with a copying
collector. Still, LLVM optimizations would probably undo a front-end's careful
work.

//===---------------------------------------------------------------------===//

The ocaml frametable structure supports liveness information. It would be good
to support it.

//===---------------------------------------------------------------------===//

The FIXME in ComputeCommonTailLength in BranchFolding.cpp needs to be
revisited. The check is there to work around a misuse of directives in inline
assembly.

//===---------------------------------------------------------------------===//

It would be good to detect collector/target compatibility instead of silently
doing the wrong thing.

//===---------------------------------------------------------------------===//

It would be really nice to be able to write patterns in .td files for copies,
which would eliminate a bunch of explicit predicates on them (e.g. no side 
effects).  Once this is in place, it would be even better to have tblgen 
synthesize the various copy insertion/inspection methods in TargetInstrInfo.

//===---------------------------------------------------------------------===//

Stack coloring improvements:

1. Do proper LiveStackAnalysis on all stack objects including those which are
   not spill slots.
2. Reorder objects to fill in gaps between objects.
   e.g. 4, 1, <gap>, 4, 1, 1, 1, <gap>, 4 => 4, 1, 1, 1, 1, 4, 4

//===---------------------------------------------------------------------===//

The scheduler should be able to sort nearby instructions by their address. For
example, in an expanded memset sequence it's not uncommon to see code like this:

  movl $0, 4(%rdi)
  movl $0, 8(%rdi)
  movl $0, 12(%rdi)
  movl $0, 0(%rdi)

Each of the stores is independent, and the scheduler is currently making an
arbitrary decision about the order.

//===---------------------------------------------------------------------===//

Another opportunitiy in this code is that the $0 could be moved to a register:

  movl $0, 4(%rdi)
  movl $0, 8(%rdi)
  movl $0, 12(%rdi)
  movl $0, 0(%rdi)

This would save substantial code size, especially for longer sequences like
this. It would be easy to have a rule telling isel to avoid matching MOV32mi
if the immediate has more than some fixed number of uses. It's more involved
to teach the register allocator how to do late folding to recover from
excessive register pressure.