llvm-6502/lib/CodeGen
Andrew Trick 5d7ab8503b VirtRegRewriter fix: update kill flags, which are used by the scavenger.
rdar://problem/8893967: JM/lencod miscompile at -arch armv7 -mthumb -O3

Added ResurrectKill to remove kill flags after we decide to reused a
physical register. And (hopefully) ensure that we call it in all the
right places.

Sorry, I'm not checking in a unit test given that it's a miscompile I
can't reproduce easily with a toy example. Failures in the rewriter
depend on a series of heuristic decisions maked during one of the many
upstream phases in codegen. This case would require coercing regalloc
to generate a couple of rematerialzations in a way that causes the
scavenger to reuse the same register at just the wrong point.

The general way to test this is to implement kill flags
verification. Then we could have a simple, robust compile-only unit
test. That would be worth doing if the whole pass was not about to
disappear. At this point we focus verification work on the next
generation of regalloc.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124442 91177308-0d34-0410-b5e6-96231b3b80d8
2011-01-27 21:26:43 +00:00
..
AsmPrinter Support printing exception section into the current one. This is the case when LSDASection is blank 2011-01-24 22:38:40 +00:00
SelectionDAG Speculatively revert r124380. 2011-01-27 19:15:01 +00:00
AggressiveAntiDepBreaker.cpp
AggressiveAntiDepBreaker.h
AllocationOrder.cpp Simplify a bunch of isVirtualRegister() and isPhysicalRegister() logic. 2011-01-10 02:58:51 +00:00
AllocationOrder.h
Analysis.cpp
AntiDepBreaker.h
BranchFolding.cpp
BranchFolding.h
CalcSpillWeights.cpp Replace TargetRegisterInfo::printReg with a PrintReg class that also works without a TRI instance. 2011-01-09 03:05:53 +00:00
CallingConvLower.cpp
CMakeLists.txt sort this. 2011-01-09 21:31:39 +00:00
CodeGen.cpp
CodePlacementOpt.cpp
CriticalAntiDepBreaker.cpp
CriticalAntiDepBreaker.h
DeadMachineInstructionElim.cpp Simplify a bunch of isVirtualRegister() and isPhysicalRegister() logic. 2011-01-10 02:58:51 +00:00
DwarfEHPrepare.cpp
EdgeBundles.cpp
ELF.h
ELFCodeEmitter.cpp
ELFCodeEmitter.h
ELFWriter.cpp
ELFWriter.h
ExpandISelPseudos.cpp
GCMetadata.cpp
GCMetadataPrinter.cpp
GCStrategy.cpp Rename TargetFrameInfo into TargetFrameLowering. Also, put couple of FIXMEs and fixes here and there. 2011-01-10 12:39:04 +00:00
IfConversion.cpp
InlineSpiller.cpp Teach TargetRegisterInfo how to cram stack slot indexes in with the virtual and 2011-01-09 21:17:37 +00:00
IntrinsicLowering.cpp
LatencyPriorityQueue.cpp
LiveDebugVariables.cpp Better terminator avoidance. 2011-01-13 23:35:53 +00:00
LiveDebugVariables.h
LiveInterval.cpp Implement RAGreedy::splitAroundRegion and remove loop splitting. 2011-01-19 22:11:48 +00:00
LiveIntervalAnalysis.cpp Simplify a bunch of isVirtualRegister() and isPhysicalRegister() logic. 2011-01-10 02:58:51 +00:00
LiveIntervalUnion.cpp Replace TargetRegisterInfo::printReg with a PrintReg class that also works without a TRI instance. 2011-01-09 03:05:53 +00:00
LiveIntervalUnion.h
LiveRangeEdit.cpp
LiveRangeEdit.h Teach the inline spiller to attempt folding a load instruction into its single 2010-12-18 03:04:14 +00:00
LiveStackAnalysis.cpp Teach TargetRegisterInfo how to cram stack slot indexes in with the virtual and 2011-01-09 21:17:37 +00:00
LiveVariables.cpp
LLVMTargetMachine.cpp Add support for the --noexecstack option. 2011-01-23 17:55:27 +00:00
LocalStackSlotAllocation.cpp Rename TargetFrameInfo into TargetFrameLowering. Also, put couple of FIXMEs and fixes here and there. 2011-01-10 12:39:04 +00:00
LowerSubregs.cpp
MachineBasicBlock.cpp Try for the third time to teach getFirstTerminator() about debug values. 2011-01-14 06:33:45 +00:00
MachineCSE.cpp fit in 80 cols and use MBB::isSuccessor instead of a hand 2011-01-10 07:51:31 +00:00
MachineDominators.cpp
MachineFunction.cpp Rename TargetFrameInfo into TargetFrameLowering. Also, put couple of FIXMEs and fixes here and there. 2011-01-10 12:39:04 +00:00
MachineFunctionAnalysis.cpp
MachineFunctionPass.cpp
MachineFunctionPrinterPass.cpp
MachineInstr.cpp Simplify a bunch of isVirtualRegister() and isPhysicalRegister() logic. 2011-01-10 02:58:51 +00:00
MachineLICM.cpp Sorry, several patches in one. 2011-01-20 08:34:58 +00:00
MachineLoopInfo.cpp
MachineLoopRanges.cpp
MachineModuleInfo.cpp Fixed version of 121434 with no new memory leaks. 2010-12-10 07:39:47 +00:00
MachineModuleInfoImpls.cpp
MachinePassRegistry.cpp
MachineRegisterInfo.cpp Use IndexedMap for MachineRegisterInfo as well. No functional change. 2011-01-09 03:05:46 +00:00
MachineSink.cpp
MachineSSAUpdater.cpp
MachineVerifier.cpp Verify slot index ordering. 2011-01-12 21:27:48 +00:00
Makefile
ObjectCodeEmitter.cpp
OcamlGC.cpp
OptimizePHIs.cpp
Passes.cpp
PeepholeOptimizer.cpp Simplify a bunch of isVirtualRegister() and isPhysicalRegister() logic. 2011-01-10 02:58:51 +00:00
PHIElimination.cpp Try for the third time to teach getFirstTerminator() about debug values. 2011-01-14 06:33:45 +00:00
PHIEliminationUtils.cpp
PHIEliminationUtils.h
PostRASchedulerList.cpp
PreAllocSplitting.cpp
ProcessImplicitDefs.cpp
PrologEpilogInserter.cpp Rename TargetFrameInfo into TargetFrameLowering. Also, put couple of FIXMEs and fixes here and there. 2011-01-10 12:39:04 +00:00
PrologEpilogInserter.h Get rid of static constructors for pass registration. Instead, every pass exposes an initializeMyPassFunction(), which 2010-10-19 17:21:58 +00:00
PseudoSourceValue.cpp
README.txt
RegAllocBase.h
RegAllocBasic.cpp
RegAllocFast.cpp Simplify a bunch of isVirtualRegister() and isPhysicalRegister() logic. 2011-01-10 02:58:51 +00:00
RegAllocGreedy.cpp SplitKit requires that all defs are in place before calling useIntv(). 2011-01-20 17:45:23 +00:00
RegAllocLinearScan.cpp Avoid modifying the OneClassForEachPhysReg map while iterating over it. 2011-01-27 07:26:15 +00:00
RegAllocPBQP.cpp
RegisterCoalescer.cpp
RegisterScavenging.cpp
RenderMachineFunction.cpp
RenderMachineFunction.h
ScheduleDAG.cpp
ScheduleDAGEmit.cpp
ScheduleDAGInstrs.cpp
ScheduleDAGInstrs.h
ScheduleDAGPrinter.cpp
ScoreboardHazardRecognizer.cpp Convert -enable-sched-cycles and -enable-sched-hazard to -disable 2011-01-21 05:51:33 +00:00
ShadowStackGC.cpp use ArgOperand API and CallSite to access arguments of CallInst 2010-06-25 08:48:19 +00:00
ShrinkWrapping.cpp Fix bug found by new clang warning. 2011-01-20 02:43:19 +00:00
SimpleRegisterCoalescing.cpp Check that a live range exists before shortening it. This fixes PR8989. 2011-01-20 06:20:02 +00:00
SimpleRegisterCoalescing.h
SjLjEHPrepare.cpp
SlotIndexes.cpp
Spiller.cpp Teach TargetRegisterInfo how to cram stack slot indexes in with the virtual and 2011-01-09 21:17:37 +00:00
Spiller.h
SpillPlacement.cpp Divert Hopfield network debug output. It is very noisy. 2011-01-19 23:14:59 +00:00
SpillPlacement.h Add RAGreedy methods for splitting live ranges around regions. 2011-01-18 21:13:27 +00:00
SplitKit.cpp Rename member variables to follow the rest of LLVM. 2011-01-26 00:50:53 +00:00
SplitKit.h Rename member variables to follow the rest of LLVM. 2011-01-26 00:50:53 +00:00
Splitter.cpp
Splitter.h
StackProtector.cpp
StackSlotColoring.cpp Teach TargetRegisterInfo how to cram stack slot indexes in with the virtual and 2011-01-09 21:17:37 +00:00
StrongPHIElimination.cpp Eliminate some extra hash table lookups. 2011-01-09 10:54:21 +00:00
TailDuplication.cpp Simplify a bunch of isVirtualRegister() and isPhysicalRegister() logic. 2011-01-10 02:58:51 +00:00
TargetInstrInfoImpl.cpp Convert -enable-sched-cycles and -enable-sched-hazard to -disable 2011-01-21 05:51:33 +00:00
TargetLoweringObjectFileImpl.cpp Delay the creation of eh_frame so that the user can change the defaults. 2011-01-23 05:43:40 +00:00
TwoAddressInstructionPass.cpp Simplify a bunch of isVirtualRegister() and isPhysicalRegister() logic. 2011-01-10 02:58:51 +00:00
UnreachableBlockElim.cpp
VirtRegMap.cpp Simplify a bunch of isVirtualRegister() and isPhysicalRegister() logic. 2011-01-10 02:58:51 +00:00
VirtRegMap.h Add a forgotten VireReg2IndexFunctor. 2011-01-09 18:58:33 +00:00
VirtRegRewriter.cpp VirtRegRewriter fix: update kill flags, which are used by the scavenger. 2011-01-27 21:26:43 +00:00
VirtRegRewriter.h

//===---------------------------------------------------------------------===//

Common register allocation / spilling problem:

        mul lr, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        ldr r4, [sp, #+52]
        mla r4, r3, lr, r4

can be:

        mul lr, r4, lr
        mov r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

and then "merge" mul and mov:

        mul r4, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

It also increase the likelyhood the store may become dead.

//===---------------------------------------------------------------------===//

bb27 ...
        ...
        %reg1037 = ADDri %reg1039, 1
        %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10
    Successors according to CFG: 0x8b03bf0 (#5)

bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5):
    Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4)
        %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0>

Note ADDri is not a two-address instruction. However, its result %reg1037 is an
operand of the PHI node in bb76 and its operand %reg1039 is the result of the
PHI node. We should treat it as a two-address code and make sure the ADDri is
scheduled after any node that reads %reg1039.

//===---------------------------------------------------------------------===//

Use local info (i.e. register scavenger) to assign it a free register to allow
reuse:
        ldr r3, [sp, #+4]
        add r3, r3, #3
        ldr r2, [sp, #+8]
        add r2, r2, #2
        ldr r1, [sp, #+4]  <==
        add r1, r1, #1
        ldr r0, [sp, #+4]
        add r0, r0, #2

//===---------------------------------------------------------------------===//

LLVM aggressively lift CSE out of loop. Sometimes this can be negative side-
effects:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
load [i + R1]
...
load [i + R2]
...
load [i + R3]

Suppose there is high register pressure, R1, R2, R3, can be spilled. We need
to implement proper re-materialization to handle this:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
R1 = X + 4  @ re-materialized
load [i + R1]
...
R2 = X + 7 @ re-materialized
load [i + R2]
...
R3 = X + 15 @ re-materialized
load [i + R3]

Furthermore, with re-association, we can enable sharing:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
T = i + X
load [T + 4]
...
load [T + 7]
...
load [T + 15]
//===---------------------------------------------------------------------===//

It's not always a good idea to choose rematerialization over spilling. If all
the load / store instructions would be folded then spilling is cheaper because
it won't require new live intervals / registers. See 2003-05-31-LongShifts for
an example.

//===---------------------------------------------------------------------===//

With a copying garbage collector, derived pointers must not be retained across
collector safe points; the collector could move the objects and invalidate the
derived pointer. This is bad enough in the first place, but safe points can
crop up unpredictably. Consider:

        %array = load { i32, [0 x %obj] }** %array_addr
        %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n
        %old = load %obj** %nth_el
        %z = div i64 %x, %y
        store %obj* %new, %obj** %nth_el

If the i64 division is lowered to a libcall, then a safe point will (must)
appear for the call site. If a collection occurs, %array and %nth_el no longer
point into the correct object.

The fix for this is to copy address calculations so that dependent pointers
are never live across safe point boundaries. But the loads cannot be copied
like this if there was an intervening store, so may be hard to get right.

Only a concurrent mutator can trigger a collection at the libcall safe point.
So single-threaded programs do not have this requirement, even with a copying
collector. Still, LLVM optimizations would probably undo a front-end's careful
work.

//===---------------------------------------------------------------------===//

The ocaml frametable structure supports liveness information. It would be good
to support it.

//===---------------------------------------------------------------------===//

The FIXME in ComputeCommonTailLength in BranchFolding.cpp needs to be
revisited. The check is there to work around a misuse of directives in inline
assembly.

//===---------------------------------------------------------------------===//

It would be good to detect collector/target compatibility instead of silently
doing the wrong thing.

//===---------------------------------------------------------------------===//

It would be really nice to be able to write patterns in .td files for copies,
which would eliminate a bunch of explicit predicates on them (e.g. no side 
effects).  Once this is in place, it would be even better to have tblgen 
synthesize the various copy insertion/inspection methods in TargetInstrInfo.

//===---------------------------------------------------------------------===//

Stack coloring improvments:

1. Do proper LiveStackAnalysis on all stack objects including those which are
   not spill slots.
2. Reorder objects to fill in gaps between objects.
   e.g. 4, 1, <gap>, 4, 1, 1, 1, <gap>, 4 => 4, 1, 1, 1, 1, 4, 4

//===---------------------------------------------------------------------===//

The scheduler should be able to sort nearby instructions by their address. For
example, in an expanded memset sequence it's not uncommon to see code like this:

  movl $0, 4(%rdi)
  movl $0, 8(%rdi)
  movl $0, 12(%rdi)
  movl $0, 0(%rdi)

Each of the stores is independent, and the scheduler is currently making an
arbitrary decision about the order.

//===---------------------------------------------------------------------===//

Another opportunitiy in this code is that the $0 could be moved to a register:

  movl $0, 4(%rdi)
  movl $0, 8(%rdi)
  movl $0, 12(%rdi)
  movl $0, 0(%rdi)

This would save substantial code size, especially for longer sequences like
this. It would be easy to have a rule telling isel to avoid matching MOV32mi
if the immediate has more than some fixed number of uses. It's more involved
to teach the register allocator how to do late folding to recover from
excessive register pressure.