mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-13 20:32:21 +00:00
5b17297b3d
Previously print+verify passes were added in a very unsystematic way, which is annoying when debugging as you miss intermediate steps and allows bugs to stay unnotice when no verification is performed. To make this change practical I added the possibility to explicitely disable verification. I used this option on all places where no verification was performed previously (because alot of places actually don't pass the MachineVerifier). In the long term these problems should be fixed properly and verification enabled after each pass. I'll enable some more verification in subsequent commits. This is the 2nd attempt at this after realizing that PassManager::add() may actually delete the pass. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224059 91177308-0d34-0410-b5e6-96231b3b80d8 |
||
---|---|---|
.. | ||
AsmParser | ||
Disassembler | ||
InstPrinter | ||
MCTargetDesc | ||
TargetInfo | ||
CMakeLists.txt | ||
LLVMBuild.txt | ||
Makefile | ||
README.txt | ||
SystemZ.h | ||
SystemZ.td | ||
SystemZAsmPrinter.cpp | ||
SystemZAsmPrinter.h | ||
SystemZCallingConv.cpp | ||
SystemZCallingConv.h | ||
SystemZCallingConv.td | ||
SystemZConstantPoolValue.cpp | ||
SystemZConstantPoolValue.h | ||
SystemZElimCompare.cpp | ||
SystemZFrameLowering.cpp | ||
SystemZFrameLowering.h | ||
SystemZInstrBuilder.h | ||
SystemZInstrFormats.td | ||
SystemZInstrFP.td | ||
SystemZInstrInfo.cpp | ||
SystemZInstrInfo.h | ||
SystemZInstrInfo.td | ||
SystemZISelDAGToDAG.cpp | ||
SystemZISelLowering.cpp | ||
SystemZISelLowering.h | ||
SystemZLongBranch.cpp | ||
SystemZMachineFunctionInfo.cpp | ||
SystemZMachineFunctionInfo.h | ||
SystemZMCInstLower.cpp | ||
SystemZMCInstLower.h | ||
SystemZOperands.td | ||
SystemZOperators.td | ||
SystemZPatterns.td | ||
SystemZProcessors.td | ||
SystemZRegisterInfo.cpp | ||
SystemZRegisterInfo.h | ||
SystemZRegisterInfo.td | ||
SystemZSelectionDAGInfo.cpp | ||
SystemZSelectionDAGInfo.h | ||
SystemZShortenInst.cpp | ||
SystemZSubtarget.cpp | ||
SystemZSubtarget.h | ||
SystemZTargetMachine.cpp | ||
SystemZTargetMachine.h |
//===---------------------------------------------------------------------===// // Random notes about and ideas for the SystemZ backend. //===---------------------------------------------------------------------===// The initial backend is deliberately restricted to z10. We should add support for later architectures at some point. -- SystemZDAGToDAGISel::SelectInlineAsmMemoryOperand() is passed "m" for all inline asm memory constraints; it doesn't get to see the original constraint. This means that it must conservatively treat all inline asm constraints as the most restricted type, "R". -- If an inline asm ties an i32 "r" result to an i64 input, the input will be treated as an i32, leaving the upper bits uninitialised. For example: define void @f4(i32 *%dst) { %val = call i32 asm "blah $0", "=r,0" (i64 103) store i32 %val, i32 *%dst ret void } from CodeGen/SystemZ/asm-09.ll will use LHI rather than LGHI. to load 103. This seems to be a general target-independent problem. -- The tuning of the choice between LOAD ADDRESS (LA) and addition in SystemZISelDAGToDAG.cpp is suspect. It should be tweaked based on performance measurements. -- There is no scheduling support. -- We don't use the BRANCH ON INDEX instructions. -- We might want to use BRANCH ON CONDITION for conditional indirect calls and conditional returns. -- We don't use the TEST DATA CLASS instructions. -- We could use the generic floating-point forms of LOAD COMPLEMENT, LOAD NEGATIVE and LOAD POSITIVE in cases where we don't need the condition codes. For example, we could use LCDFR instead of LCDBR. -- We only use MVC, XC and CLC for constant-length block operations. We could extend them to variable-length operations too, using EXECUTE RELATIVE LONG. MVCIN, MVCLE and CLCLE may be worthwhile too. -- We don't use CUSE or the TRANSLATE family of instructions for string operations. The TRANSLATE ones are probably more difficult to exploit. -- We don't take full advantage of builtins like fabsl because the calling conventions require f128s to be returned by invisible reference. -- ADD LOGICAL WITH SIGNED IMMEDIATE could be useful when we need to produce a carry. SUBTRACT LOGICAL IMMEDIATE could be useful when we need to produce a borrow. (Note that there are no memory forms of ADD LOGICAL WITH CARRY and SUBTRACT LOGICAL WITH BORROW, so the high part of 128-bit memory operations would probably need to be done via a register.) -- We don't use the halfword forms of LOAD REVERSED and STORE REVERSED (LRVH and STRVH). -- We don't use ICM or STCM. -- DAGCombiner doesn't yet fold truncations of extended loads. Functions like: unsigned long f (unsigned long x, unsigned short *y) { return (x << 32) | *y; } therefore end up as: sllg %r2, %r2, 32 llgh %r0, 0(%r3) lr %r2, %r0 br %r14 but truncating the load would give: sllg %r2, %r2, 32 lh %r2, 0(%r3) br %r14 -- Functions like: define i64 @f1(i64 %a) { %and = and i64 %a, 1 ret i64 %and } ought to be implemented as: lhi %r0, 1 ngr %r2, %r0 br %r14 but two-address optimisations reverse the order of the AND and force: lhi %r0, 1 ngr %r0, %r2 lgr %r2, %r0 br %r14 CodeGen/SystemZ/and-04.ll has several examples of this. -- Out-of-range displacements are usually handled by loading the full address into a register. In many cases it would be better to create an anchor point instead. E.g. for: define void @f4a(i128 *%aptr, i64 %base) { %addr = add i64 %base, 524288 %bptr = inttoptr i64 %addr to i128 * %a = load volatile i128 *%aptr %b = load i128 *%bptr %add = add i128 %a, %b store i128 %add, i128 *%aptr ret void } (from CodeGen/SystemZ/int-add-08.ll) we load %base+524288 and %base+524296 into separate registers, rather than using %base+524288 as a base for both. -- Dynamic stack allocations round the size to 8 bytes and then allocate that rounded amount. It would be simpler to subtract the unrounded size from the copy of the stack pointer and then align the result. See CodeGen/SystemZ/alloca-01.ll for an example. -- If needed, we can support 16-byte atomics using LPQ, STPQ and CSDG. -- We might want to model all access registers and use them to spill 32-bit values.