This could occur because when FindSymbol was called to look for symbols in all spaces, it would find a tag in an inner scope before a typedef in an outer scope. The processing order has been changed to look for regular symbols (including typedefs) in any scope, and only look for tags if no regular symbol is found.
Here is an example illustrating the problem:
typedef int T;
int main(void) {
struct T;
T x;
}
This adds debugging code to detect null pointer dereferences, as well as pointer arithmetic on null pointers (which is also undefined behavior, and can lead to later dereferences of the resulting pointers).
Note that ORCA/Pascal can already detect null pointer dereferences as part of its more general range-checking code. This implementation for ORCA/C will report the same error as ORCA/Pascal ("Subrange exceeded"). However, it does not include any of the other forms of range checking that ORCA/Pascal does, and (unlike in ORCA/Pascal) it is controlled by a separate flag from stack overflow checking.
These are erroneous, in situations where the expression is used for its value. For function return types, this violates a constraint (C17 6.5.2.2 p1), so a diagnostic is required. We also now diagnose this issue for identifier expressions or unary * (indirection) expressions. These cases cause undefined behavior per C17 6.3.2.1 p2, so a diagnostic is not required, but it is nice to give one.
This occurs when the constant value is out of range of the type being assigned to. This is likely indicative of an error, or of code that assumes types have larger ranges than they do in ORCA/C (e.g. 32-bit int).
This intentionally does not report cases where a value is assigned to a signed type but is within the range of the corresponding unsigned type, or vice versa. These may be done intentionally, e.g. setting an unsigned value to "-1" or setting a signed value using a hex constant with the high bit set. Also, only conversions to 8-bit or 16-bit integer types are currently checked.
I think the reason this was originally disallowed is that the old code sequence for stack repair code (in ORCA/C 2.1.0) ended with TYA. If this was followed by STA dp or STA abs, the native code peephole optimizer (prior to commit 7364e2d2d329d81) would have turned the combination into a STY instruction. That is invalid if the value in A is needed. This could come up, e.g., when assigning the return value from a function to two different variables.
This is no longer an issue, because the current code sequence for stack repair code no longer ends in TYA and is not susceptible to the same kind of invalid optimization. So it is no longer necessary to disable the native code peephole optimizer when using stack repair code (either for all calls or just varargs calls).
This is necessary both to detect errors (using unary + on non-arithmetic types) and to correctly perform the integer promotions when unary + is used (which can be detected with sizeof or _Generic).
This provides a more straightforward way to place the compiler in a "strict conformance" mode. This could essentially be achieved by setting several pragma options, but having a single setting is simpler. "Compatibility modes" for older standards can also be selected, although these actually continue to enable most C17 features (since they are unlikely to cause compatibility problems for older code).
It will now grow as needed to accommodate large segments, subject to the constraints of available memory. In practice, this mostly affects the size of initialized static arrays that can be used.
This also removes any limit apart from memory size on how large the object representation produced by a "compile to memory" can be, and cleans up error reporting regarding size limits.
With the addition of designated initializers, ORCA/C now supports all the major mandatory language features added between C90 and C17, apart from those made optional by C11. There are still various small areas of nonconformance and a number of missing library functions, but at this point it is reasonable for ORCA/C to report itself as being a C17 implementation.
This is currently used in a couple places in the designated initializer code (solving the problem with #pragma expand in the last commit). It could probably be used elsewhere too, but for now it is not.
This is a minimal implementation that does not actually inline anything, but it is intended to implement the semantics defined by the C99 and later standards.
One complication is that a declaration that appears somewhere after the function body may create an external definition for a function that appeared to be an inline definition when it was defined. To support this while preserving ORCA/C's general one-pass compilation strategy, we generate code even for inline definitions, but treat them as private and add the prefix "~inline~" to the name. If they are "un-inlined" based on a later declaration, we generate a stub with external linkage that just jumps to the apparently-inline function.
This still has a few issues. A \ token may not be followed by u or U (because this triggers UCN processing). We should scan through the whole possible UCN until we can confirm whether it is actually a UCN, but that would require more lookahead. Also, \ is not handled correctly in stringization (it should form escape sequences).
This implements the catch-all category for preprocessing tokens for "each non-white-space character that cannot be one of the above" (C17 section 6.4). These may appear in skipped code, or in macros or macro parameters if they are never expanded or are stringized during macro processing. The affected characters are $, @, `, and many extended characters.
It is still an error if these tokens are used in contexts where they remain present after preprocessing. If #pragma ignore bit 0 is clear, these characters are also reported as errors in skipped code or preprocessor constructs.
A function declared "inline" with an explicit "extern" storage class has the same semantics as if "inline" was omitted. (It is not an inline definition as defined in the C standards.) The "inline" specifier suggests that the function should be inlined, but it is legal to just ignore it, as we already do for "static inline" functions.
Also add a test for the inline function specifier.
This still works by "reconstructing" the string literal text, rather than just using what was in the source code. This is not what the standards specify and can result in slightly different behavior in some corner cases, but for realistic cases it is probably fine.
According to the C standards (C17 section 6.10.3 p8), they should not be subject to macro replacement.
A similar change also applies to the "STDC" in #pragma STDC ... (but we still allow macros for other pragmas, which is allowed as part of the implementation-defined behavior of #pragma).
Here is an example affected by this issue:
#define ifdef ifndef
#ifdef foobar
#error "foobar defined?"
#else
int main(void) {}
#endif
This could access arbitrary memory locations, and could theoretically cause misbehavior including falsely recognizing the token as a pragma or accessing a softswitch/IO location.
In certain error cases, tokens from subsequent lines could get treated as part of a preprocessor expression, causing subsequent code to be essentially ignored and producing strange error messages.
Here is an example (with an error) affected by this:
#pragma optimize 0 0
int main(void) {}
The scanner has been updated so that ... should always get recognized as a single token, so this is no longer necessary as a workaround. Any code that actually uses separate . . . is non-standard and will need to be changed.
This does not really do anything, because ORCA/C does not support multithreading, but the C11 and later standards indicate it should be allowed anyway.
If a struct contained a function pointer with a prototyped parameter list, processing the parameters could reset the declaredTagOrEnumConst flag, potentially leading to a spurious error, as in this example:
struct S {
int (*f)(int);
};
This also gives a better error for structs declared as containing functions.
This is necessary to correctly handle line continuations in a few places:
* Between an initial . and the subsequent digit in a floating constant
* Between the third and fourth characters of a %:%: digraph
* Between the second and third dots of a ... token
Previously, these would not be tokenized correctly, leading to spurious errors in the first and second cases above.
Here is a sample program illustrating the problem:
int printf(const char * restrict, ..\
\
??/
.);
int main(void) {
double d = .??/
\
??/
\
1234;
printf("%f\n", d);
}
C90 had constraints requiring # and ## tokens to only appear in preprocessing directives, but C99 and later removed those constraints, so this code is no longer necessary when targeting current languages versions. (It would be necessary in a "strict C90" mode, if that was ever implemented.)
The main practical effect of this is that # and ## tokens can be passed as parameters to macros, provided the macro either ignores or stringizes that parameter. # and ## tokens still have no role in the grammar of the C language after preprocessing, so they will be an unexpected token and produce some kind of error if they appear anywhere.
This also contains a change to ensure that a line containing one or more illegal characters (e.g. $) and then a # is not treated as a preprocessing directive.
This accords with its definition in the C standards. For the time being, the old form of three separate tokens is still accepted too, because the ... token may not be scanned correctly in the obscure case where there is a line continuation between the second and third dots.
One observable effect of this is that there are no longer spaces between the dots in #pragma expand output.
This enforces the constraint from C17 section 6.7 p2 that declarations "shall declare at least a declarator (other than the parameters of a function or the members of a structure or union), a tag, or the members of an enumeration."
Somewhat relaxed rules are used for enums in the default loose type checking mode, similar to what GCC and Clang do.
This differs from the usual ORCA/C behavior of treating all floating-point parameters as extended. With the option enabled, they will still be passed in the extended format, but will be converted to their declared type at the start of the function. This is needed for strict standards conformance, because you should be able to take the address of a parameter and get a usable pointer to its declared type. The difference in types can also affect the behavior of _Generic expressions.
The implementation of this is based on ORCA/Pascal, which already did the same thing (unconditionally) with real/double/comp parameters.
If strict type checking is enabled, this will prohibit redefinition of enums, like:
enum E {a,b,c};
enum E {x,y,z};
It also prohibits use of an "enum E" type specifier if the enum has not been previously declared (with its constants).
These things were historically supported by ORCA/C, but they are prohibited by constraints in section 6.7.2.3 of C99 and later. (The C90 wording was different and less clear, but I think they were not intended to be valid there either.)
This makes a macro defined on the command line like -Dfoo=-1 consist of two tokens, the same as it would if defined in code. (Previously, it was just one token.)
This also somewhat expands the set of macros accepted on the command line. A prefix of +, -, *, &, ~, or ! (the one-character unary operators) can now be used ahead of any identifier, number, or string. Empty macro definitions like -Dfoo= are also permitted.
The basic approach is to generate a single expression tree containing the code for the initialization plus the reference to the compound literal (or its address). The various subexpressions are joined together with pc_bno pcodes, similar to the code generated for the comma operator. The initializer expressions are placed in a balanced binary tree, so that it is not excessively deep.
Note: Common subexpression elimination has poor performance for very large trees. This is not specific to compound literals, but compound literals for relatively large arrays can run into this issue. It will eventually complete and generate a correct program, but it may be quite slow. To avoid this, turn off CSE.
It should only be done after all the ## operators in the macro have been evaluated, potentially merging together several tokens via successive ## operators.
Here is an example illustrating the problem:
#define merge(a,b,c) a##b##c
#define foobar
#define foobarbaz a
int merge(foo,bar,baz) = 42;
int main(void) {
return a;
}
If such macros were used within other macros, they would generally not be expanded, due to the order in which operations were evaluated during preprocessing.
This is actually an issue that was fixed by the changes from ORCA/C 2.1.0 to 2.1.1 B3, but then broken again by commit d0b4b75970.
Here is an example with the name of a keyword:
#define X long int
#define long
X x;
int main(void) {
return sizeof(x); /* should be sizeof(int) */
}
Here is an example with the name of a typedef:
typedef short T;
#define T long
#define X T
X x;
int main(void) {
return sizeof(x); /* should be sizeof(long) */
}