1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-12 15:31:09 +00:00
CLK/Machines/Apple/AppleIIgs/MemoryMap.hpp

626 lines
23 KiB
C++
Raw Normal View History

//
// MemoryMap.hpp
// Clock Signal
//
// Created by Thomas Harte on 25/10/2020.
// Copyright © 2020 Thomas Harte. All rights reserved.
//
#ifndef Machines_Apple_AppleIIgs_MemoryMap_hpp
#define Machines_Apple_AppleIIgs_MemoryMap_hpp
#include <array>
2021-02-27 22:13:49 -05:00
#include <bitset>
#include <vector>
#include "../AppleII/LanguageCardSwitches.hpp"
#include "../AppleII/AuxiliaryMemorySwitches.hpp"
namespace Apple {
namespace IIgs {
class MemoryMap {
private:
using PagingType = Apple::II::PagingType;
public:
// MARK: - Initial construction and configuration.
MemoryMap() : auxiliary_switches_(*this), language_card_(*this) {}
void set_storage(std::vector<uint8_t> &ram, std::vector<uint8_t> &rom) {
// Keep a pointer for later; also note the proper RAM offset.
ram_base = ram.data();
shadow_base[0] = ram_base; // i.e. all unshadowed writes go to where they've already gone (to make a no-op).
2020-12-10 22:11:53 -05:00
shadow_base[1] = &ram[ram.size() - 0x02'0000]; // i.e. all shadowed writes go somewhere in the last
// 128bk of RAM.
// Establish bank mapping.
uint8_t next_region = 0;
auto region = [&next_region, this]() -> uint8_t {
assert(next_region != this->regions.size());
return next_region++;
};
auto set_region = [this](uint8_t bank, uint16_t start, uint16_t end, uint8_t region) {
assert((end == 0xffff) || !(end&0xff));
assert(!(start&0xff));
// Fill in memory map.
size_t target = size_t((bank << 8) | (start >> 8));
for(int c = start; c < end; c += 0x100) {
region_map[target] = region;
++target;
}
};
auto set_regions = [set_region, region](uint8_t bank, std::initializer_list<uint16_t> addresses, std::vector<uint8_t> allocated_regions = {}) {
uint16_t previous = 0x0000;
auto next_region = allocated_regions.begin();
for(uint16_t address: addresses) {
set_region(bank, previous, address, next_region != allocated_regions.end() ? *next_region : region());
previous = address;
assert(next_region != allocated_regions.end() || allocated_regions.empty());
if(next_region != allocated_regions.end()) ++next_region;
}
assert(next_region == allocated_regions.end());
};
// Current beliefs about the IIgs memory map:
//
// * language card banking applies to banks $00, $01, $e0 and $e1;
// * auxiliary memory switches apply to bank $00 only;
// * shadowing may be enabled only on banks $00 and $01, or on all RAM pages; and
// * whether bit 16 of the address is passed to the Mega II is selectable — this affects both the destination
// of odd-bank shadows, and whether bank $e1 is actually distinct from $e0.
//
// So:
//
// * bank $00 needs to be divided by auxiliary and language card zones;
// * banks $01, $e0 and $e1 need to be divided by language card zones only; and
// * ROM banks and all other fast RAM banks don't need subdivision.
// Language card zones:
//
// $D000$E000 4kb window, into either bank 1 or bank 2
// $E000end 12kb window, always the same RAM.
// Auxiliary zones:
//
// $0000$0200 Zero page (and stack)
// $0200$0400 [space in between]
// $0400$0800 Text Page 1
// $0800$2000 [space in between]
// $2000$4000 High-res Page 1
// $4000$C000 [space in between]
// Card zones:
//
// $C100$C2FF either cards or IIe-style ROM
// $C300$C3FF IIe-supplied 80-column card replacement ROM
// $C400$C7FF either cards or IIe-style ROM
// $C800$CFFF Standard extended card area
// Reserve region 0 as that for unmapped memory.
region();
// Bank $00: all locations potentially affected by the auxiliary switches or the
// language switches.
set_regions(0x00, {
0x0200, 0x0400, 0x0800,
0x2000, 0x4000,
0xc000, 0xc100, 0xc300, 0xc400, 0xc800,
0xd000, 0xe000,
0xffff
});
// Bank $01: all locations potentially affected by the language switches and card switches.
set_regions(0x01, {
0xc000, 0xc100, 0xc300, 0xc400, 0xc800,
0xd000, 0xe000,
0xffff
});
// Banks $02[end of RAM]: a single region.
const auto fast_region = region();
const uint8_t fast_ram_bank_limit = uint8_t(ram.size() / 0x01'0000);
for(uint8_t bank = 0x02; bank < fast_ram_bank_limit; bank++) {
set_region(bank, 0x0000, 0xffff, fast_region);
}
// [Banks $80$e0: empty].
// Banks $e0, $e1: all locations potentially affected by the language switches or marked for IO.
// Alas, separate regions are needed due to the same ROM appearing on both pages.
for(uint8_t c = 0; c < 2; c++) {
set_regions(0xe0 + c, {0xc000, 0xc100, 0xc300, 0xc400, 0xc800, 0xd000, 0xe000, 0xffff});
}
// [Banks $e2[ROM start]: empty].
// ROM banks: directly mapped to ROM.
const uint8_t rom_bank_count = uint8_t(rom.size() >> 16);
const uint8_t first_rom_bank = uint8_t(0x100 - rom_bank_count);
const uint8_t rom_region = region();
for(uint8_t c = 0; c < rom_bank_count; ++c) {
set_region(first_rom_bank + c, 0x0000, 0xffff, rom_region);
}
// Apply proper storage to those banks.
auto set_storage = [this](uint32_t address, const uint8_t *read, uint8_t *write) {
// Don't allow the reserved null region to be modified.
assert(region_map[address >> 8]);
// Either set or apply a quick bit of testing as to the logic at play.
auto &region = regions[region_map[address >> 8]];
if(read) read -= address;
if(write) write -= address;
if(!region.read) {
region.read = read;
region.write = write;
} else {
assert(region.read == read);
assert(region.write == write);
}
};
// This is highly redundant, but decouples this step from the above.
2020-12-10 22:11:53 -05:00
for(size_t c = 0; c < 0x80'0000; c += 0x100) {
if(c < ram.size() - 0x02'0000) {
set_storage(uint32_t(c), &ram[c], &ram[c]);
}
}
uint8_t *const slow_ram = &ram[ram.size() - 0x02'0000] - 0xe0'0000;
for(size_t c = 0xe0'0000; c < 0xe2'0000; c += 0x100) {
set_storage(uint32_t(c), &slow_ram[c], &slow_ram[c]);
}
for(uint32_t c = 0; c < uint32_t(rom_bank_count); c++) {
set_storage((first_rom_bank + c) << 16, &rom[c << 16], nullptr);
}
// Set shadowing as working from banks 0 and 1 (forever).
shadow_banks[0] = true;
// TODO: set 1Mhz flags.
// Apply initial language/auxiliary state.
set_paging<~0>();
}
// MARK: - Live bus access notifications and register access.
void set_shadow_register(uint8_t value) {
const uint8_t diff = value ^ shadow_register_;
shadow_register_ = value;
if(diff & 0x40) { // IO/language-card inhibit.
set_paging<PagingType::LanguageCard | PagingType::CardArea>();
}
if(diff & 0x3f) {
set_shadowing();
}
}
uint8_t get_shadow_register() const {
return shadow_register_;
}
void set_speed_register(uint8_t value) {
speed_register_ = value;
// Enable or disable shadowing from banks 0x020x80.
for(size_t c = 0x01; c < 0x40; c++) {
shadow_banks[c] = speed_register_ & 0x10;
}
}
void set_state_register(uint8_t value) {
auxiliary_switches_.set_state(value);
language_card_.set_state(value);
}
uint8_t get_state_register() const {
return language_card_.get_state() | auxiliary_switches_.get_state();
}
void access(uint16_t address, bool is_read) {
auxiliary_switches_.access(address, is_read);
if((address & 0xfff0) == 0xc080) language_card_.access(address, is_read);
}
using AuxiliaryMemorySwitches = Apple::II::AuxiliaryMemorySwitches<MemoryMap>;
const AuxiliaryMemorySwitches &auxiliary_switches() const {
return auxiliary_switches_;
}
using LanguageCardSwitches = Apple::II::LanguageCardSwitches<MemoryMap>;
const LanguageCardSwitches &language_card_switches() const {
return language_card_;
}
private:
AuxiliaryMemorySwitches auxiliary_switches_;
LanguageCardSwitches language_card_;
friend AuxiliaryMemorySwitches;
friend LanguageCardSwitches;
2021-09-09 22:06:36 -04:00
uint8_t shadow_register_ = 0x00;
uint8_t speed_register_ = 0x00;
// MARK: - Memory banking.
#define assert_is_region(start, end) \
assert(region_map[start] == region_map[start-1]+1); \
assert(region_map[end-1] == region_map[start]); \
assert(region_map[end] == region_map[end-1]+1);
template <int type> void set_paging() {
// Update the region from
// $D000 onwards as per the state of the language card flags — there may
// end up being ROM or RAM (or auxiliary RAM), and the first 4kb of it
// may be drawn from either of two pools.
if constexpr (bool(type & (PagingType::LanguageCard | PagingType::ZeroPage | PagingType::Main))) {
const auto language_state = language_card_.state();
const auto zero_state = auxiliary_switches_.zero_state();
const auto main = auxiliary_switches_.main_state();
const bool inhibit_banks0001 = shadow_register_ & 0x40;
auto apply = [&language_state, this](uint32_t bank_base, uint8_t *ram) {
// This assumes bank 1 is the one before bank 2 when RAM is linear.
uint8_t *const d0_ram_bank = ram - (language_state.bank2 ? 0x0000 : 0x1000);
// Crib the ROM pointer from a page it's always visible on.
const uint8_t *const rom = &regions[region_map[0xffd0]].read[0xff'd000] - ((bank_base << 8) + 0xd000);
auto &d0_region = regions[region_map[bank_base | 0xd0]];
d0_region.read = language_state.read ? d0_ram_bank : rom;
d0_region.write = language_state.write ? nullptr : d0_ram_bank;
auto &e0_region = regions[region_map[bank_base | 0xe0]];
e0_region.read = language_state.read ? ram : rom;
e0_region.write = language_state.write ? nullptr : ram;
// Assert assumptions made above re: memory layout.
assert(region_map[bank_base | 0xd0] + 1 == region_map[bank_base | 0xe0]);
assert(region_map[bank_base | 0xe0] == region_map[bank_base | 0xff]);
};
auto set_no_card = [this](uint32_t bank_base, uint8_t *read, uint8_t *write) {
auto &d0_region = regions[region_map[bank_base | 0xd0]];
d0_region.read = read;
d0_region.write = write;
auto &e0_region = regions[region_map[bank_base | 0xe0]];
e0_region.read = read;
e0_region.write = write;
// Assert assumptions made above re: memory layout.
assert(region_map[bank_base | 0xd0] + 1 == region_map[bank_base | 0xe0]);
assert(region_map[bank_base | 0xe0] == region_map[bank_base | 0xff]);
};
if(inhibit_banks0001) {
set_no_card(0x0000,
main.base.read ? &ram_base[0x01'0000] : ram_base,
main.base.write ? &ram_base[0x01'0000] : ram_base);
set_no_card(0x0100, ram_base, ram_base);
} else {
apply(0x0000, zero_state ? &ram_base[0x01'0000] : ram_base);
apply(0x0100, ram_base);
}
// The pointer stored in region_map[0xe000] has already been adjusted for
// the 0xe0'0000 addressing offset.
uint8_t *const e0_ram = regions[region_map[0xe000]].write;
apply(0xe000, e0_ram);
apply(0xe100, e0_ram);
}
// Establish whether main or auxiliary RAM
// is exposed in bank $00 for a bunch of regions.
if constexpr (type & PagingType::Main) {
const auto state = auxiliary_switches_.main_state();
#define set(page, flags) {\
auto &region = regions[region_map[page]]; \
region.read = flags.read ? &ram_base[0x01'0000] : ram_base; \
region.write = flags.write ? &ram_base[0x01'0000] : ram_base; \
}
// Base: $0200$03FF.
set(0x02, state.base);
assert_is_region(0x02, 0x04);
// Region $0400$07ff.
set(0x04, state.region_04_08);
assert_is_region(0x04, 0x08);
// Base: $0800$1FFF.
set(0x08, state.base);
assert_is_region(0x08, 0x20);
// Region $2000$3FFF.
set(0x20, state.region_20_40);
assert_is_region(0x20, 0x40);
// Base: $4000$BFFF.
set(0x40, state.base);
assert_is_region(0x40, 0xc0);
#undef set
}
// Update whether base or auxiliary RAM is visible in: (i) the zero
// and stack pages; and (ii) anywhere that the language card is exposing RAM instead of ROM.
if constexpr (bool(type & PagingType::ZeroPage)) {
// Affects bank $00 only, and should be a single region.
auto &region = regions[region_map[0]];
region.read = region.write = auxiliary_switches_.zero_state() ? &ram_base[0x01'0000] : ram_base;
assert(region_map[0x0000] == region_map[0x0001]);
assert(region_map[0x0001]+1 == region_map[0x0002]);
}
// Establish whether ROM or card switches are exposed in the distinct
// regions C100C2FF, C300C3FF, C400C7FF and C800CFFF.
//
// On the IIgs it intersects with the current shadow register.
if constexpr (bool(type & (PagingType::CardArea | PagingType::Main))) {
const bool inhibit_banks0001 = shadow_register_ & 0x40;
const auto state = auxiliary_switches_.card_state();
auto apply = [&state, this](uint32_t bank_base) {
auto &c0_region = regions[region_map[bank_base | 0xc0]];
auto &c1_region = regions[region_map[bank_base | 0xc1]];
auto &c3_region = regions[region_map[bank_base | 0xc3]];
auto &c4_region = regions[region_map[bank_base | 0xc4]];
auto &c8_region = regions[region_map[bank_base | 0xc8]];
const uint8_t *const rom = &regions[region_map[0xffd0]].read[0xffc100] - ((bank_base << 8) + 0xc100);
// This is applied dynamically as it may be added or lost in banks $00 and $01.
c0_region.flags |= Region::IsIO;
#define apply_region(flag, region) \
region.write = nullptr; \
if(flag) { \
region.read = rom; \
region.flags &= ~Region::IsIO; \
} else { \
region.flags |= Region::IsIO; \
}
apply_region(state.region_C1_C3, c1_region);
apply_region(state.region_C3, c3_region);
apply_region(state.region_C4_C8, c4_region);
apply_region(state.region_C8_D0, c8_region);
#undef apply_region
// Sanity checks.
assert(region_map[bank_base | 0xc1] == region_map[bank_base | 0xc0]+1);
assert(region_map[bank_base | 0xc2] == region_map[bank_base | 0xc1]);
assert(region_map[bank_base | 0xc3] == region_map[bank_base | 0xc2]+1);
assert(region_map[bank_base | 0xc4] == region_map[bank_base | 0xc3]+1);
assert(region_map[bank_base | 0xc7] == region_map[bank_base | 0xc4]);
assert(region_map[bank_base | 0xc8] == region_map[bank_base | 0xc7]+1);
assert(region_map[bank_base | 0xcf] == region_map[bank_base | 0xc8]);
assert(region_map[bank_base | 0xd0] == region_map[bank_base | 0xcf]+1);
};
if(inhibit_banks0001) {
// Set no IO in the Cx00 range for banks $00 and $01, just
// regular RAM (or possibly auxiliary).
const auto auxiliary_state = auxiliary_switches_.main_state();
for(uint8_t region = region_map[0x00c0]; region < region_map[0x00d0]; region++) {
regions[region].read = auxiliary_state.base.read ? &ram_base[0x01'0000] : ram_base;
regions[region].write = auxiliary_state.base.write ? &ram_base[0x01'0000] : ram_base;
regions[region].flags &= ~Region::IsIO;
}
for(uint8_t region = region_map[0x01c0]; region < region_map[0x01d0]; region++) {
regions[region].read = regions[region].write = ram_base;
regions[region].flags &= ~Region::IsIO;
}
} else {
// Obey the card state for banks $00 and $01.
apply(0x0000);
apply(0x0100);
}
// Obey the card state for banks $e0 and $e1.
apply(0xe000);
apply(0xe100);
}
}
// IIgs specific: sets or resets the ::IsShadowed flag across affected banks as
// per the current state of the shadow register.
//
// Completely distinct from the auxiliary and language card switches.
void set_shadowing() {
// Relevant bits:
//
// b5: inhibit shadowing, text page 2 [if ROM 03; as if always set otherwise]
// b4: inhibit shadowing, auxiliary high-res graphics
// b3: inhibit shadowing, super high-res graphics
// b2: inhibit shadowing, high-res graphics page 2
// b1: inhibit shadowing, high-res graphics page 1
// b0: inhibit shadowing, text page 1
//
// The interpretations of how the overlapping high-res and super high-res inhibit
// bits apply used below is taken from The Apple IIgs Technical Reference, P. 178.
// Of course, zones are:
//
// $0400$0800 Text Page 1
// $0800$0C00 Text Page 2 [ROM 03 machines]
// $2000$4000 High-res Page 1, and Super High-res in odd banks
// $4000$6000 High-res Page 2, and Huper High-res in odd banks
// $6000$a000 Odd banks only, rest of Super High-res
// [plus IO and language card space, subject to your definition of shadowing]
static constexpr int shadow_shift = 10;
static constexpr int auxiliary_offset = 0x1'0000 >> shadow_shift;
enum Inhibit {
TextPage1 = 0x01,
HighRes1 = 0x02,
HighRes2 = 0x04,
SuperHighRes = 0x08,
AuxiliaryHighRes = 0x10,
TextPage2 = 0x20,
};
// Text Page 1, main and auxiliary — $0400$0800.
for(size_t c = 0x0400 >> shadow_shift; c < 0x0800 >> shadow_shift; c++) {
shadow_pages[c] = shadow_pages[c+auxiliary_offset] = !(shadow_register_ & Inhibit::TextPage1);
}
// Text Page 2, main and auxiliary — 0x08000x0c00.
// TODO: on a ROM03 machine only.
for(size_t c = 0x0800 >> shadow_shift; c < 0x0c00 >> shadow_shift; c++) {
shadow_pages[c] = shadow_pages[c+auxiliary_offset] = !(shadow_register_ & Inhibit::TextPage2);
}
// Hi-res graphics Page 1, main and auxiliary — $2000$4000;
2020-12-10 22:47:11 -05:00
// also part of the super high-res graphics page on odd pages.
//
// Even test applied:
// high-res graphics page 1 inhibit bit alone is definitive.
//
// Odd test:
// (high-res graphics inhibit or auxiliary high res graphics inhibit) _and_ (super high-res inhibit).
2020-11-16 21:46:35 -05:00
//
for(size_t c = 0x2000 >> shadow_shift; c < 0x4000 >> shadow_shift; c++) {
shadow_pages[c] = !(shadow_register_ & Inhibit::HighRes1);
shadow_pages[c+auxiliary_offset] = !(
shadow_register_ & (Inhibit::HighRes1 | Inhibit::AuxiliaryHighRes) &&
shadow_register_ & Inhibit::SuperHighRes
);
}
// Hi-res graphics Page 2, main and auxiliary — $4000$6000;
// also part of the super high-res graphics page.
2020-11-16 21:46:35 -05:00
//
2020-12-10 22:47:11 -05:00
// Test applied: much like that for page 1.
for(size_t c = 0x4000 >> shadow_shift; c < 0x6000 >> shadow_shift; c++) {
shadow_pages[c] = !(shadow_register_ & Inhibit::HighRes2);
shadow_pages[c+auxiliary_offset] = !(
shadow_register_ & (Inhibit::HighRes2 | Inhibit::AuxiliaryHighRes) &&
shadow_register_ & Inhibit::SuperHighRes
);
}
2020-11-16 21:46:35 -05:00
// Residue of Super Hi-Res — $6000$a000 (odd pages only).
//
// Test applied:
// auxiliary high res graphics inhibit and super high-res inhibit
for(size_t c = 0x6000 >> shadow_shift; c < 0xa000 >> shadow_shift; c++) {
shadow_pages[c+auxiliary_offset] =
!(shadow_register_ & Inhibit::SuperHighRes && shadow_register_ & Inhibit::AuxiliaryHighRes);
}
}
void print_state() {
uint8_t region = region_map[0];
uint32_t start = 0;
for(uint32_t top = 0; top < 65536; top++) {
if(region_map[top] == region) continue;
printf("%06x -> %06x\t", start, top << 8);
printf("%c%c\n",
(regions[region_map[top] - 1].flags & Region::Is1Mhz) ? '1' : '-',
(regions[region_map[top] - 1].flags & Region::IsIO) ? 'x' : '-'
);
start = top << 8;
region = region_map[top];
}
}
#undef assert_is_region
public:
// Memory layout here is done via double indirection; the main loop should:
// (i) use the top two bytes of the address to get an index from memory_map_; and
// (ii) use that to index the memory_regions table.
//
// Pointers are eight bytes at the time of writing, so the extra level of indirection
// reduces what would otherwise be a 1.25mb table down to not a great deal more than 64kb.
std::array<uint8_t, 65536> region_map{};
uint8_t *ram_base = nullptr;
uint8_t *shadow_base[2] = {nullptr, nullptr};
static constexpr int shadow_mask[2] = {0xff'ffff, 0x01'ffff};
struct Region {
uint8_t *write = nullptr;
const uint8_t *read = nullptr;
uint8_t flags = 0;
enum Flag: uint8_t {
Is1Mhz = 1 << 0, // Both reads and writes should be synchronised with the 1Mhz clock.
IsIO = 1 << 1, // Indicates that this region should be checked for soft switches, registers, etc.
};
};
// Shadow_pages: divides the final 128kb of memory into 1kb chunks and includes a flag to indicate whether
// each is a potential destination for shadowing.
//
// Shadow_banks: divides the whole 16mb of memory into 128kb chunks and includes a flag to indicate whether
// each is a potential source of shadowing.
std::bitset<128> shadow_pages{}, shadow_banks{};
std::array<Region, 40> regions; // An assert above ensures that this is large enough; there's no
// doctrinal reason for it to be whatever size it is now, just
// adjust as required.
};
// TODO: branching below on region.read/write is predicated on the idea that extra scratch space
// would be less efficient. Verify that?
#define MemoryMapRegion(map, address) map.regions[map.region_map[address >> 8]]
#define MemoryMapRead(region, address, value) *value = region.read ? region.read[address] : 0xff
// The below encapsulates the fact that I've yet to determine whether Apple intends to
// indicate that logical addresses (i.e. those prior to being mapped per the current paging)
// or physical addresses (i.e. after mapping) are subject to shadowing.
#ifdef SHADOW_LOGICAL
#define IsShadowed(map, region, address) \
(map.shadow_pages[((&region.write[address] - map.ram_base) >> 10) & 127] & map.shadow_banks[address >> 17])
#define MemoryMapWrite(map, region, address, value) \
if(region.write) { \
region.write[address] = *value; \
const bool _mm_is_shadowed = IsShadowed(map, region, address); \
map.shadow_base[_mm_is_shadowed][address & map.shadow_mask[_mm_is_shadowed]] = *value; \
}
#else
#define IsShadowed(map, region, address) \
(map.shadow_pages[(address >> 10) & 127] & map.shadow_banks[address >> 17])
#define MemoryMapWrite(map, region, address, value) \
2020-10-25 21:40:50 -04:00
if(region.write) { \
region.write[address] = *value; \
const bool _mm_is_shadowed = IsShadowed(map, region, address); \
2021-04-05 21:33:04 -04:00
map.shadow_base[_mm_is_shadowed][(&region.write[address] - map.ram_base) & map.shadow_mask[_mm_is_shadowed]] = *value; \
}
#endif
2020-10-27 21:56:03 -04:00
// Quick notes on ::IsShadowed contortions:
//
// The objective is to support shadowing:
// 1. without storing a whole extra pointer, and such that the shadowing flags are orthogonal to the current auxiliary memory settings;
// 2. in such a way as to support shadowing both in banks $00/$01 and elsewhere; and
// 3. to do so without introducing too much in the way of branching.
//
// Hence the implemented solution: if shadowing is enabled then use the distance from the start of physical RAM
// modulo 128k indexed into the bank $e0/$e1 RAM.
//
// With a further twist: the modulo and pointer are indexed on ::IsShadowed to eliminate a branch even on that.
}
}
#endif /* MemoryMap_h */