1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-17 13:29:02 +00:00
CLK/Components/6522/Implementation/6522Implementation.hpp

498 lines
17 KiB
C++
Raw Normal View History

//
// Implementation.hpp
// Clock Signal
//
// Created by Thomas Harte on 04/09/2017.
// Copyright 2017 Thomas Harte. All rights reserved.
//
2019-03-02 23:07:05 +00:00
#include "../../../Outputs/Log.hpp"
// As-yet unimplemented (incomplete list):
//
// PB6 count-down mode for timer 2.
2019-03-02 23:07:05 +00:00
namespace MOS {
namespace MOS6522 {
template <typename T> void MOS6522<T>::access(int address) {
switch(address) {
case 0x0:
// In both handshake and pulse modes, CB2 goes low on any read or write of Port B.
if(handshake_modes_[1] != HandshakeMode::None) {
set_control_line_output(Port::B, Line::Two, LineState::Off);
}
break;
case 0xf:
case 0x1:
// In both handshake and pulse modes, CA2 goes low on any read or write of Port A.
if(handshake_modes_[0] != HandshakeMode::None) {
set_control_line_output(Port::A, Line::Two, LineState::Off);
}
break;
}
}
template <typename T> void MOS6522<T>::write(int address, uint8_t value) {
address &= 0xf;
access(address);
switch(address) {
2020-09-17 23:00:46 +00:00
case 0x0: // Write Port B. ('ORB')
// Store locally and communicate outwards.
registers_.output[1] = value;
bus_handler_.run_for(time_since_bus_handler_call_.flush<HalfCycles>());
evaluate_port_b_output();
registers_.interrupt_flags &= ~(InterruptFlag::CB1ActiveEdge | ((registers_.peripheral_control&0x20) ? 0 : InterruptFlag::CB2ActiveEdge));
reevaluate_interrupts();
break;
case 0xf:
2020-09-17 23:00:46 +00:00
case 0x1: // Write Port A. ('ORA')
registers_.output[0] = value;
bus_handler_.run_for(time_since_bus_handler_call_.flush<HalfCycles>());
bus_handler_.set_port_output(Port::A, value, registers_.data_direction[0]);
if(handshake_modes_[1] != HandshakeMode::None) {
set_control_line_output(Port::A, Line::Two, LineState::Off);
}
registers_.interrupt_flags &= ~(InterruptFlag::CA1ActiveEdge | ((registers_.peripheral_control&0x02) ? 0 : InterruptFlag::CB2ActiveEdge));
reevaluate_interrupts();
break;
2020-09-17 23:00:46 +00:00
case 0x2: // Port B direction ('DDRB').
registers_.data_direction[1] = value;
break;
2020-09-17 23:00:46 +00:00
case 0x3: // Port A direction ('DDRA').
registers_.data_direction[0] = value;
break;
// Timer 1
2020-09-17 23:00:46 +00:00
case 0x6: case 0x4: // ('T1L-L' and 'T1C-L')
registers_.timer_latch[0] = (registers_.timer_latch[0]&0xff00) | value;
break;
case 0x7: // Timer 1 latch, high ('T1L-H').
registers_.timer_latch[0] = (registers_.timer_latch[0]&0x00ff) | uint16_t(value << 8);
break;
case 0x5: // Timer 1 counter, high ('T1C-H').
// Fill latch.
registers_.timer_latch[0] = (registers_.timer_latch[0]&0x00ff) | uint16_t(value << 8);
// Restart timer.
registers_.next_timer[0] = registers_.timer_latch[0];
timer_is_running_[0] = true;
// If PB7 output mode is active, set it low.
if(timer1_is_controlling_pb7()) {
registers_.timer_port_b_output &= 0x7f;
evaluate_port_b_output();
}
// Clear existing interrupt flag.
registers_.interrupt_flags &= ~InterruptFlag::Timer1;
reevaluate_interrupts();
break;
// Timer 2
2020-09-17 23:00:46 +00:00
case 0x8: // ('T2C-L')
registers_.timer_latch[1] = value;
break;
case 0x9: // ('T2C-H')
registers_.interrupt_flags &= ~InterruptFlag::Timer2;
registers_.next_timer[1] = registers_.timer_latch[1] | uint16_t(value << 8);
timer_is_running_[1] = true;
reevaluate_interrupts();
break;
// Shift
2020-09-17 23:00:46 +00:00
case 0xa: // ('SR')
2019-05-08 19:02:07 +00:00
registers_.shift = value;
shift_bits_remaining_ = 8;
registers_.interrupt_flags &= ~InterruptFlag::ShiftRegister;
reevaluate_interrupts();
2019-05-08 19:02:07 +00:00
break;
// Control
2020-09-17 23:00:46 +00:00
case 0xb: // Auxiliary control ('ACR').
registers_.auxiliary_control = value;
evaluate_cb2_output();
// This is a bit of a guess: reset the timer-based PB7 output to its default high level
// any timer that timer-linked PB7 output is disabled.
if(!timer1_is_controlling_pb7()) {
registers_.timer_port_b_output |= 0x80;
}
evaluate_port_b_output();
break;
2020-09-17 23:00:46 +00:00
case 0xc: { // Peripheral control ('PCR').
2019-05-08 18:54:40 +00:00
// const auto old_peripheral_control = registers_.peripheral_control;
registers_.peripheral_control = value;
int shift = 0;
for(int port = 0; port < 2; ++port) {
handshake_modes_[port] = HandshakeMode::None;
switch((value >> shift) & 0x0e) {
default: break;
case 0x00: // Negative interrupt input; set Cx2 interrupt on negative Cx2 transition, clear on access to Port x register.
case 0x02: // Independent negative interrupt input; set Cx2 interrupt on negative transition, don't clear automatically.
case 0x04: // Positive interrupt input; set Cx2 interrupt on positive Cx2 transition, clear on access to Port x register.
case 0x06: // Independent positive interrupt input; set Cx2 interrupt on positive transition, don't clear automatically.
set_control_line_output(Port(port), Line::Two, LineState::Input);
break;
case 0x08: // Handshake: set Cx2 to low on any read or write of Port x; set to high on an active transition of Cx1.
handshake_modes_[port] = HandshakeMode::Handshake;
set_control_line_output(Port(port), Line::Two, LineState::Off); // At a guess.
break;
case 0x0a: // Pulse output: Cx2 is low for one cycle following a read or write of Port x.
handshake_modes_[port] = HandshakeMode::Pulse;
set_control_line_output(Port(port), Line::Two, LineState::On);
break;
case 0x0c: // Manual output: Cx2 low.
set_control_line_output(Port(port), Line::Two, LineState::Off);
break;
case 0x0e: // Manual output: Cx2 high.
set_control_line_output(Port(port), Line::Two, LineState::On);
break;
}
shift += 4;
}
} break;
// Interrupt control
2020-09-17 23:00:46 +00:00
case 0xd: // Interrupt flag regiser ('IFR').
registers_.interrupt_flags &= ~value;
reevaluate_interrupts();
break;
2020-09-17 23:00:46 +00:00
case 0xe: // Interrupt enable register ('IER').
if(value&0x80)
registers_.interrupt_enable |= value;
else
registers_.interrupt_enable &= ~value;
reevaluate_interrupts();
break;
}
}
template <typename T> uint8_t MOS6522<T>::read(int address) {
address &= 0xf;
access(address);
switch(address) {
2020-09-17 23:00:46 +00:00
case 0x0: // Read Port B ('IRB').
registers_.interrupt_flags &= ~(InterruptFlag::CB1ActiveEdge | InterruptFlag::CB2ActiveEdge);
reevaluate_interrupts();
return get_port_input(Port::B, registers_.data_direction[1], registers_.output[1], registers_.auxiliary_control & 0x80);
case 0xf:
2020-09-17 23:00:46 +00:00
case 0x1: // Read Port A ('IRA').
registers_.interrupt_flags &= ~(InterruptFlag::CA1ActiveEdge | InterruptFlag::CA2ActiveEdge);
reevaluate_interrupts();
return get_port_input(Port::A, registers_.data_direction[0], registers_.output[0], 0);
2020-09-17 23:00:46 +00:00
case 0x2: return registers_.data_direction[1]; // Port B direction ('DDRB').
case 0x3: return registers_.data_direction[0]; // Port A direction ('DDRA').
// Timer 1
2020-09-17 23:00:46 +00:00
case 0x4: // Timer 1 low-order latches ('T1L-L').
registers_.interrupt_flags &= ~InterruptFlag::Timer1;
reevaluate_interrupts();
return registers_.timer[0] & 0x00ff;
2020-09-17 23:00:46 +00:00
case 0x5: return registers_.timer[0] >> 8; // Timer 1 high-order counter ('T1C-H')
case 0x6: return registers_.timer_latch[0] & 0x00ff; // Timer 1 low-order latches ('T1L-L').
case 0x7: return registers_.timer_latch[0] >> 8; // Timer 1 high-order latches ('T1L-H').
// Timer 2
2020-09-17 23:00:46 +00:00
case 0x8: // Timer 2 low-order counter ('T2C-L').
registers_.interrupt_flags &= ~InterruptFlag::Timer2;
reevaluate_interrupts();
return registers_.timer[1] & 0x00ff;
2020-09-17 23:00:46 +00:00
case 0x9: return registers_.timer[1] >> 8; // Timer 2 high-order counter ('T2C-H').
2020-09-17 23:00:46 +00:00
case 0xa: // Shift register ('SR').
2019-05-08 19:02:07 +00:00
shift_bits_remaining_ = 8;
registers_.interrupt_flags &= ~InterruptFlag::ShiftRegister;
reevaluate_interrupts();
2019-05-08 19:02:07 +00:00
return registers_.shift;
2020-09-17 23:00:46 +00:00
case 0xb: return registers_.auxiliary_control; // Auxiliary control ('ACR').
case 0xc: return registers_.peripheral_control; // Peripheral control ('PCR').
2020-09-17 23:00:46 +00:00
case 0xd: return registers_.interrupt_flags | (get_interrupt_line() ? 0x80 : 0x00); // Interrupt flag register ('IFR').
case 0xe: return registers_.interrupt_enable | 0x80; // Interrupt enable register ('IER').
}
return 0xff;
}
template <typename T> uint8_t MOS6522<T>::get_port_input(Port port, uint8_t output_mask, uint8_t output, uint8_t timer_mask) {
bus_handler_.run_for(time_since_bus_handler_call_.flush<HalfCycles>());
const uint8_t input = bus_handler_.get_port_input(port);
output = (output & ~timer_mask) | (registers_.timer_port_b_output & timer_mask);
return (input & ~output_mask) | (output & output_mask);
}
template <typename T> T &MOS6522<T>::bus_handler() {
return bus_handler_;
}
// Delegate and communications
template <typename T> void MOS6522<T>::reevaluate_interrupts() {
bool new_interrupt_status = get_interrupt_line();
if(new_interrupt_status != last_posted_interrupt_status_) {
last_posted_interrupt_status_ = new_interrupt_status;
bus_handler_.run_for(time_since_bus_handler_call_.flush<HalfCycles>());
bus_handler_.set_interrupt_status(new_interrupt_status);
}
}
2019-03-02 23:07:05 +00:00
template <typename T> void MOS6522<T>::set_control_line_input(Port port, Line line, bool value) {
switch(line) {
case Line::One:
if(value != control_inputs_[port].lines[line]) {
// In handshake mode, any transition on C[A/B]1 sets output high on C[A/B]2.
if(handshake_modes_[port] == HandshakeMode::Handshake) {
set_control_line_output(port, Line::Two, LineState::On);
}
2019-05-08 18:54:40 +00:00
// Set the proper transition interrupt bit if enabled.
if(value == !!(registers_.peripheral_control & (port ? 0x10 : 0x01))) {
registers_.interrupt_flags |= port ? InterruptFlag::CB1ActiveEdge : InterruptFlag::CA1ActiveEdge;
reevaluate_interrupts();
}
// If this is a transition on CB1, consider updating the shift register.
// TODO: and at least one full clock since the shift register was written?
if(port == Port::B) {
switch(shift_mode()) {
default: break;
case ShiftMode::InUnderCB1: if(value) shift_in(); break; // Shifts in are captured on a low-to-high transition.
case ShiftMode::OutUnderCB1: if(!value) shift_out(); break; // Shifts out are updated on a high-to-low transition.
2019-05-08 18:54:40 +00:00
}
}
}
control_inputs_[port].lines[line] = value;
break;
case Line::Two:
if( value != control_inputs_[port].lines[line] && // i.e. value has changed ...
!(registers_.peripheral_control & (port ? 0x80 : 0x08)) && // ... and line is input ...
value == !!(registers_.peripheral_control & (port ? 0x40 : 0x04)) // ... and it's either high or low, as required
) {
registers_.interrupt_flags |= port ? InterruptFlag::CB2ActiveEdge : InterruptFlag::CA2ActiveEdge;
reevaluate_interrupts();
}
control_inputs_[port].lines[line] = value;
break;
}
}
template <typename T> void MOS6522<T>::do_phase2() {
++ time_since_bus_handler_call_;
registers_.last_timer[0] = registers_.timer[0];
registers_.last_timer[1] = registers_.timer[1];
if(registers_.timer_needs_reload) {
registers_.timer_needs_reload = false;
registers_.timer[0] = registers_.timer_latch[0];
} else {
-- registers_.timer[0];
}
// Count down timer 2 if it is in timed interrupt mode (i.e. auxiliary control bit 5 is clear).
registers_.timer[1] -= timer2_clock_decrement();
// TODO: can eliminate conditional branches here.
if(registers_.next_timer[0] >= 0) {
registers_.timer[0] = uint16_t(registers_.next_timer[0]);
registers_.next_timer[0] = -1;
}
if(registers_.next_timer[1] >= 0) {
registers_.timer[1] = uint16_t(registers_.next_timer[1]);
registers_.next_timer[1] = -1;
}
// In pulse modes, CA2 and CB2 go high again on the next clock edge.
if(handshake_modes_[1] == HandshakeMode::Pulse) {
set_control_line_output(Port::B, Line::Two, LineState::On);
}
if(handshake_modes_[0] == HandshakeMode::Pulse) {
set_control_line_output(Port::A, Line::Two, LineState::On);
}
// If the shift register is shifting according to the input clock, do a shift.
switch(shift_mode()) {
default: break;
case ShiftMode::InUnderPhase2: shift_in(); break;
case ShiftMode::OutUnderPhase2: shift_out(); break;
}
}
template <typename T> void MOS6522<T>::do_phase1() {
++ time_since_bus_handler_call_;
// IRQ is raised on the half cycle after overflow
if((registers_.timer[1] == 0xffff) && !registers_.last_timer[1] && timer_is_running_[1]) {
timer_is_running_[1] = false;
2019-05-08 18:54:40 +00:00
// If the shift register is shifting according to this timer, do a shift.
// TODO: "shift register is driven by only the low order 8 bits of timer 2"?
switch(shift_mode()) {
default: break;
case ShiftMode::InUnderT2: shift_in(); break;
case ShiftMode::OutUnderT2FreeRunning: shift_out(); break;
case ShiftMode::OutUnderT2: shift_out(); break; // TODO: present a clock on CB1.
2019-05-08 18:54:40 +00:00
}
registers_.interrupt_flags |= InterruptFlag::Timer2;
reevaluate_interrupts();
}
if((registers_.timer[0] == 0xffff) && !registers_.last_timer[0] && timer_is_running_[0]) {
registers_.interrupt_flags |= InterruptFlag::Timer1;
reevaluate_interrupts();
2019-06-03 19:39:20 +00:00
// Determine whether to reload.
if(timer1_is_continuous())
registers_.timer_needs_reload = true;
else
timer_is_running_[0] = false;
2019-06-03 19:39:20 +00:00
// Determine whether to toggle PB7.
if(timer1_is_controlling_pb7()) {
registers_.timer_port_b_output ^= 0x80;
bus_handler_.run_for(time_since_bus_handler_call_.flush<HalfCycles>());
evaluate_port_b_output();
2019-06-03 19:39:20 +00:00
}
}
}
template <typename T> void MOS6522<T>::evaluate_port_b_output() {
// Apply current timer-linked PB7 output if any atop the stated output.
const uint8_t timer_control_bit = registers_.auxiliary_control & 0x80;
bus_handler_.set_port_output(
Port::B,
(registers_.output[1] & (0xff ^ timer_control_bit)) | timer_control_bit,
registers_.data_direction[1] | timer_control_bit);
}
/*! Runs for a specified number of half cycles. */
template <typename T> void MOS6522<T>::run_for(const HalfCycles half_cycles) {
auto number_of_half_cycles = half_cycles.as_integral();
if(!number_of_half_cycles) return;
if(is_phase2_) {
do_phase2();
number_of_half_cycles--;
}
while(number_of_half_cycles >= 2) {
do_phase1();
do_phase2();
number_of_half_cycles -= 2;
}
if(number_of_half_cycles) {
do_phase1();
is_phase2_ = true;
} else {
is_phase2_ = false;
}
}
template <typename T> void MOS6522<T>::flush() {
bus_handler_.run_for(time_since_bus_handler_call_.flush<HalfCycles>());
bus_handler_.flush();
}
/*! Runs for a specified number of cycles. */
template <typename T> void MOS6522<T>::run_for(const Cycles cycles) {
auto number_of_cycles = cycles.as_integral();
while(number_of_cycles--) {
do_phase1();
do_phase2();
}
}
/*! @returns @c true if the IRQ line is currently active; @c false otherwise. */
2020-05-10 01:22:51 +00:00
template <typename T> bool MOS6522<T>::get_interrupt_line() const {
uint8_t interrupt_status = registers_.interrupt_flags & registers_.interrupt_enable & 0x7f;
2020-05-10 01:22:51 +00:00
return interrupt_status;
}
template <typename T> void MOS6522<T>::evaluate_cb2_output() {
// CB2 is a special case, being both the line the shift register can output to,
// and one that can be used as an input or handshaking output according to the
// peripheral control register.
// My guess: other CB2 functions work only if the shift register is disabled (?).
if(shift_mode() != ShiftMode::Disabled) {
// Shift register is enabled, one way or the other; but announce only output.
if(is_shifting_out()) {
// Output mode; set the level according to the current top of the shift register.
bus_handler_.set_control_line_output(Port::B, Line::Two, !!(registers_.shift & 0x80));
} else {
// Input mode.
bus_handler_.set_control_line_output(Port::B, Line::Two, true);
}
} else {
// Shift register is disabled.
bus_handler_.set_control_line_output(Port::B, Line::Two, control_outputs_[1].lines[1] != LineState::Off);
}
}
template <typename T> void MOS6522<T>::set_control_line_output(Port port, Line line, LineState value) {
if(port == Port::B && line == Line::Two) {
control_outputs_[port].lines[line] = value;
evaluate_cb2_output();
} else {
// Do nothing if unchanged.
if(value == control_outputs_[port].lines[line]) {
return;
}
control_outputs_[port].lines[line] = value;
if(value != LineState::Input) {
bus_handler_.run_for(time_since_bus_handler_call_.flush<HalfCycles>());
bus_handler_.set_control_line_output(port, line, value != LineState::Off);
}
}
}
2019-05-08 18:54:40 +00:00
template <typename T> void MOS6522<T>::shift_in() {
registers_.shift = uint8_t((registers_.shift << 1) | (control_inputs_[1].lines[1] ? 1 : 0));
2019-05-08 19:02:07 +00:00
--shift_bits_remaining_;
if(!shift_bits_remaining_) {
registers_.interrupt_flags |= InterruptFlag::ShiftRegister;
reevaluate_interrupts();
}
2019-05-08 18:54:40 +00:00
}
template <typename T> void MOS6522<T>::shift_out() {
const bool is_free_running = shift_mode() == ShiftMode::OutUnderT2FreeRunning;
if(is_free_running || shift_bits_remaining_) {
// Recirculate bits only if in free-running mode (?)
const uint8_t incoming_bit = (registers_.shift >> 7) * is_free_running;
registers_.shift = uint8_t(registers_.shift << 1) | incoming_bit;
evaluate_cb2_output();
--shift_bits_remaining_;
if(!shift_bits_remaining_) {
registers_.interrupt_flags |= InterruptFlag::ShiftRegister;
reevaluate_interrupts();
}
2019-05-08 19:02:07 +00:00
}
2019-05-08 18:54:40 +00:00
}
2019-03-02 23:07:05 +00:00
}
}