llvm-6502/lib/Target/SparcV9/SparcV9Internals.h

654 lines
24 KiB
C
Raw Normal View History

// $Id$ -*- C++ -*--
//***************************************************************************
// File:
// SparcInternals.h
//
// Purpose:
// This file defines stuff that is to be private to the Sparc
// backend, but is shared among different portions of the backend.
//**************************************************************************/
#ifndef SPARC_INTERNALS_H
#define SPARC_INTERNALS_H
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/MachineSchedInfo.h"
#include "llvm/Target/MachineFrameInfo.h"
#include "llvm/Target/MachineCacheInfo.h"
#include "llvm/Target/MachineRegInfo.h"
#include "llvm/Type.h"
#include <sys/types.h>
class LiveRange;
class UltraSparc;
class PhyRegAlloc;
class Pass;
Pass *createPrologEpilogCodeInserter(TargetMachine &TM);
// OpCodeMask definitions for the Sparc V9
//
const OpCodeMask Immed = 0x00002000; // immed or reg operand?
const OpCodeMask Annul = 0x20000000; // annul delay instr?
const OpCodeMask PredictTaken = 0x00080000; // predict branch taken?
enum SparcInstrSchedClass {
SPARC_NONE, /* Instructions with no scheduling restrictions */
SPARC_IEUN, /* Integer class that can use IEU0 or IEU1 */
SPARC_IEU0, /* Integer class IEU0 */
SPARC_IEU1, /* Integer class IEU1 */
SPARC_FPM, /* FP Multiply or Divide instructions */
SPARC_FPA, /* All other FP instructions */
SPARC_CTI, /* Control-transfer instructions */
SPARC_LD, /* Load instructions */
SPARC_ST, /* Store instructions */
SPARC_SINGLE, /* Instructions that must issue by themselves */
SPARC_INV, /* This should stay at the end for the next value */
SPARC_NUM_SCHED_CLASSES = SPARC_INV
};
//---------------------------------------------------------------------------
// enum SparcMachineOpCode.
// const MachineInstrDescriptor SparcMachineInstrDesc[]
//
// Purpose:
// Description of UltraSparc machine instructions.
//
//---------------------------------------------------------------------------
enum SparcMachineOpCode {
#define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \
NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS) \
ENUM,
#include "SparcInstr.def"
// End-of-array marker
INVALID_OPCODE,
NUM_REAL_OPCODES = PHI, // number of valid opcodes
NUM_TOTAL_OPCODES = INVALID_OPCODE
};
// Array of machine instruction descriptions...
extern const MachineInstrDescriptor SparcMachineInstrDesc[];
//---------------------------------------------------------------------------
// class UltraSparcInstrInfo
//
// Purpose:
// Information about individual instructions.
// Most information is stored in the SparcMachineInstrDesc array above.
// Other information is computed on demand, and most such functions
// default to member functions in base class MachineInstrInfo.
//---------------------------------------------------------------------------
class UltraSparcInstrInfo : public MachineInstrInfo {
public:
/*ctor*/ UltraSparcInstrInfo(const TargetMachine& tgt);
//
// All immediate constants are in position 1 except the
// store instructions.
//
virtual int getImmedConstantPos(MachineOpCode opCode) const {
bool ignore;
if (this->maxImmedConstant(opCode, ignore) != 0)
{
assert(! this->isStore((MachineOpCode) STB - 1)); // first store is STB
assert(! this->isStore((MachineOpCode) STD + 1)); // last store is STD
return (opCode >= STB && opCode <= STD)? 2 : 1;
}
else
return -1;
}
virtual bool hasResultInterlock (MachineOpCode opCode) const
{
// All UltraSPARC instructions have interlocks (note that delay slots
// are not considered here).
// However, instructions that use the result of an FCMP produce a
// 9-cycle stall if they are issued less than 3 cycles after the FCMP.
// Force the compiler to insert a software interlock (i.e., gap of
// 2 other groups, including NOPs if necessary).
return (opCode == FCMPS || opCode == FCMPD || opCode == FCMPQ);
}
//-------------------------------------------------------------------------
// Code generation support for creating individual machine instructions
//-------------------------------------------------------------------------
// Create an instruction sequence to put the constant `val' into
// the virtual register `dest'. `val' may be a Constant or a
// GlobalValue, viz., the constant address of a global variable or function.
// The generated instructions are returned in `mvec'.
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
// Any stack space required is allocated via mcff.
//
virtual void CreateCodeToLoadConst(const TargetMachine& target,
Function* F,
Value* val,
Instruction* dest,
std::vector<MachineInstr*>& mvec,
MachineCodeForInstruction& mcfi) const;
// Create an instruction sequence to copy an integer value `val'
// to a floating point value `dest' by copying to memory and back.
// val must be an integral type. dest must be a Float or Double.
// The generated instructions are returned in `mvec'.
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
// Any stack space required is allocated via mcff.
//
virtual void CreateCodeToCopyIntToFloat(const TargetMachine& target,
Function* F,
Value* val,
Instruction* dest,
std::vector<MachineInstr*>& mvec,
MachineCodeForInstruction& mcfi) const;
// Similarly, create an instruction sequence to copy an FP value
// `val' to an integer value `dest' by copying to memory and back.
// The generated instructions are returned in `mvec'.
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
// Any stack space required is allocated via mcff.
//
virtual void CreateCodeToCopyFloatToInt(const TargetMachine& target,
Function* F,
Value* val,
Instruction* dest,
std::vector<MachineInstr*>& mvec,
MachineCodeForInstruction& mcfi) const;
// Create instruction(s) to copy src to dest, for arbitrary types
// The generated instructions are returned in `mvec'.
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
// Any stack space required is allocated via mcff.
//
virtual void CreateCopyInstructionsByType(const TargetMachine& target,
Function* F,
Value* src,
Instruction* dest,
std::vector<MachineInstr*>& mvec,
MachineCodeForInstruction& mcfi) const;
// Create instruction sequence to produce a sign-extended register value
// from an arbitrary sized value (sized in bits, not bytes).
// Any stack space required is allocated via mcff.
//
virtual void CreateSignExtensionInstructions(const TargetMachine& target,
Function* F,
Value* unsignedSrcVal,
unsigned int srcSizeInBits,
Value* dest,
std::vector<MachineInstr*>& mvec,
MachineCodeForInstruction& mcfi) const;
};
//----------------------------------------------------------------------------
// class UltraSparcRegInfo
//
// This class implements the virtual class MachineRegInfo for Sparc.
//
//----------------------------------------------------------------------------
class UltraSparcRegInfo : public MachineRegInfo {
// The actual register classes in the Sparc
//
enum RegClassIDs {
IntRegClassID, // Integer
FloatRegClassID, // Float (both single/double)
IntCCRegClassID, // Int Condition Code
FloatCCRegClassID // Float Condition code
};
// Type of registers available in Sparc. There can be several reg types
// in the same class. For instace, the float reg class has Single/Double
// types
//
enum RegTypes {
IntRegType,
FPSingleRegType,
FPDoubleRegType,
IntCCRegType,
FloatCCRegType
};
// **** WARNING: If the above enum order is changed, also modify
// getRegisterClassOfValue method below since it assumes this particular
// order for efficiency.
// reverse pointer to get info about the ultra sparc machine
//
const UltraSparc *const UltraSparcInfo;
// Number of registers used for passing int args (usually 6: %o0 - %o5)
//
unsigned const NumOfIntArgRegs;
// Number of registers used for passing float args (usually 32: %f0 - %f31)
//
unsigned const NumOfFloatArgRegs;
// An out of bound register number that can be used to initialize register
// numbers. Useful for error detection.
//
int const InvalidRegNum;
// ======================== Private Methods =============================
// The following methods are used to color special live ranges (e.g.
// function args and return values etc.) with specific hardware registers
// as required. See SparcRegInfo.cpp for the implementation.
//
void setCallOrRetArgCol(LiveRange *LR, unsigned RegNo,
const MachineInstr *MI,
std::hash_map<const MachineInstr *,
AddedInstrns *> &AIMap) const;
MachineInstr *getCopy2RegMI(const Value *SrcVal, unsigned Reg,
unsigned RegClassID) const;
void suggestReg4RetAddr(const MachineInstr *RetMI,
LiveRangeInfo &LRI) const;
void suggestReg4CallAddr(const MachineInstr *CallMI, LiveRangeInfo &LRI,
std::vector<RegClass *> RCList) const;
void InitializeOutgoingArg(const MachineInstr* CallMI, AddedInstrns *CallAI,
PhyRegAlloc &PRA, LiveRange* LR,
unsigned regType, unsigned RegClassID,
int UniArgReg, unsigned int argNo,
std::vector<MachineInstr *>& AddedInstrnsBefore)
const;
// The following 4 methods are used to find the RegType (see enum above)
// of a LiveRange, Value and using the unified RegClassID
int getRegType(unsigned regClassID, const Type* type) const;
int getRegType(const LiveRange *LR) const;
int getRegType(const Value *Val) const;
int getRegType(int reg) const;
// The following methods are used to generate copy instructions to move
// data between condition code registers
//
MachineInstr *cpCCR2IntMI(unsigned IntReg) const;
MachineInstr *cpInt2CCRMI(unsigned IntReg) const;
// Used to generate a copy instruction based on the register class of
// value.
//
MachineInstr *cpValue2RegMI(Value *Val, unsigned DestReg,
int RegType) const;
// The following 2 methods are used to order the instructions addeed by
// the register allocator in association with function calling. See
// SparcRegInfo.cpp for more details
//
void moveInst2OrdVec(std::vector<MachineInstr *> &OrdVec,
MachineInstr *UnordInst,
PhyRegAlloc &PRA) const;
void OrderAddedInstrns(std::vector<MachineInstr *> &UnordVec,
std::vector<MachineInstr *> &OrdVec,
PhyRegAlloc &PRA) const;
// Compute which register can be used for an argument, if any
//
int regNumForIntArg(bool inCallee, bool isVarArgsCall,
unsigned argNo, unsigned intArgNo, unsigned fpArgNo,
unsigned& regClassId) const;
int regNumForFPArg(unsigned RegType, bool inCallee, bool isVarArgsCall,
unsigned argNo, unsigned intArgNo, unsigned fpArgNo,
unsigned& regClassId) const;
public:
UltraSparcRegInfo(const UltraSparc &tgt);
// To get complete machine information structure using the machine register
// information
//
inline const UltraSparc &getUltraSparcInfo() const {
return *UltraSparcInfo;
}
// To find the register class used for a specified Type
//
inline unsigned getRegClassIDOfType(const Type *type,
bool isCCReg = false) const {
Type::PrimitiveID ty = type->getPrimitiveID();
unsigned res;
// FIXME: Comparing types like this isn't very safe...
if ((ty && ty <= Type::LongTyID) || (ty == Type::LabelTyID) ||
(ty == Type::FunctionTyID) || (ty == Type::PointerTyID) )
res = IntRegClassID; // sparc int reg (ty=0: void)
else if (ty <= Type::DoubleTyID)
res = FloatRegClassID; // sparc float reg class
else {
//std::cerr << "TypeID: " << ty << "\n";
assert(0 && "Cannot resolve register class for type");
return 0;
}
if(isCCReg)
return res + 2; // corresponidng condition code regiser
else
return res;
}
// To find the register class of a Value
//
inline unsigned getRegClassIDOfValue(const Value *Val,
bool isCCReg = false) const {
return getRegClassIDOfType(Val->getType(), isCCReg);
}
// getZeroRegNum - returns the register that contains always zero this is the
// unified register number
//
virtual int getZeroRegNum() const;
// getCallAddressReg - returns the reg used for pushing the address when a
// function is called. This can be used for other purposes between calls
//
unsigned getCallAddressReg() const;
// Returns the register containing the return address.
// It should be made sure that this register contains the return
// value when a return instruction is reached.
//
unsigned getReturnAddressReg() const;
// Number of registers used for passing int args (usually 6: %o0 - %o5)
// and float args (usually 32: %f0 - %f31)
//
unsigned const GetNumOfIntArgRegs() const { return NumOfIntArgRegs; }
unsigned const GetNumOfFloatArgRegs() const { return NumOfFloatArgRegs; }
// The following methods are used to color special live ranges (e.g.
// function args and return values etc.) with specific hardware registers
// as required. See SparcRegInfo.cpp for the implementation for Sparc.
//
void suggestRegs4MethodArgs(const Function *Meth,
LiveRangeInfo& LRI) const;
void suggestRegs4CallArgs(const MachineInstr *CallMI,
LiveRangeInfo& LRI,
std::vector<RegClass *> RCL) const;
void suggestReg4RetValue(const MachineInstr *RetMI,
LiveRangeInfo& LRI) const;
void colorMethodArgs(const Function *Meth, LiveRangeInfo &LRI,
AddedInstrns *FirstAI) const;
void colorCallArgs(const MachineInstr *CallMI, LiveRangeInfo &LRI,
AddedInstrns *CallAI, PhyRegAlloc &PRA,
const BasicBlock *BB) const;
void colorRetValue(const MachineInstr *RetI, LiveRangeInfo& LRI,
AddedInstrns *RetAI) const;
// method used for printing a register for debugging purposes
//
static void printReg(const LiveRange *LR);
// this method provides a unique number for each register
//
inline int getUnifiedRegNum(int RegClassID, int reg) const {
if( RegClassID == IntRegClassID && reg < 32 )
return reg;
else if ( RegClassID == FloatRegClassID && reg < 64)
return reg + 32; // we have 32 int regs
else if( RegClassID == FloatCCRegClassID && reg < 4)
return reg + 32 + 64; // 32 int, 64 float
else if( RegClassID == IntCCRegClassID )
return reg + 4+ 32 + 64; // only int cc reg
else if (reg==InvalidRegNum)
return InvalidRegNum;
else
assert(0 && "Invalid register class or reg number");
return 0;
}
// given the unified register number, this gives the name
// for generating assembly code or debugging.
//
virtual const std::string getUnifiedRegName(int reg) const;
// returns the # of bytes of stack space allocated for each register
// type. For Sparc, currently we allocate 8 bytes on stack for all
// register types. We can optimize this later if necessary to save stack
// space (However, should make sure that stack alignment is correct)
//
inline int getSpilledRegSize(int RegType) const {
return 8;
}
// To obtain the return value and the indirect call address (if any)
// contained in a CALL machine instruction
//
const Value * getCallInstRetVal(const MachineInstr *CallMI) const;
const Value * getCallInstIndirectAddrVal(const MachineInstr *CallMI) const;
// The following methods are used to generate "copy" machine instructions
// for an architecture.
//
void cpReg2RegMI(unsigned SrcReg, unsigned DestReg,
int RegType, vector<MachineInstr*>& mvec) const;
void cpReg2MemMI(unsigned SrcReg, unsigned DestPtrReg,
int Offset, int RegType, vector<MachineInstr*>& mvec) const;
void cpMem2RegMI(unsigned SrcPtrReg, int Offset, unsigned DestReg,
int RegType, vector<MachineInstr*>& mvec) const;
void cpValue2Value(Value *Src, Value *Dest,
vector<MachineInstr*>& mvec) const;
// To see whether a register is a volatile (i.e., whehter it must be
// preserved acorss calls)
//
inline bool isRegVolatile(int RegClassID, int Reg) const {
return MachineRegClassArr[RegClassID]->isRegVolatile(Reg);
}
virtual unsigned getFramePointer() const;
virtual unsigned getStackPointer() const;
virtual int getInvalidRegNum() const {
return InvalidRegNum;
}
// This method inserts the caller saving code for call instructions
//
void insertCallerSavingCode(const MachineInstr *MInst,
const BasicBlock *BB, PhyRegAlloc &PRA ) const;
};
//---------------------------------------------------------------------------
// class UltraSparcSchedInfo
//
// Purpose:
// Interface to instruction scheduling information for UltraSPARC.
// The parameter values above are based on UltraSPARC IIi.
//---------------------------------------------------------------------------
class UltraSparcSchedInfo: public MachineSchedInfo {
public:
UltraSparcSchedInfo(const TargetMachine &tgt);
protected:
virtual void initializeResources();
};
//---------------------------------------------------------------------------
// class UltraSparcFrameInfo
//
// Purpose:
// Interface to stack frame layout info for the UltraSPARC.
// Starting offsets for each area of the stack frame are aligned at
// a multiple of getStackFrameSizeAlignment().
//---------------------------------------------------------------------------
class UltraSparcFrameInfo: public MachineFrameInfo {
public:
UltraSparcFrameInfo(const TargetMachine &tgt) : MachineFrameInfo(tgt) {}
public:
int getStackFrameSizeAlignment() const { return StackFrameSizeAlignment;}
int getMinStackFrameSize() const { return MinStackFrameSize; }
int getNumFixedOutgoingArgs() const { return NumFixedOutgoingArgs; }
int getSizeOfEachArgOnStack() const { return SizeOfEachArgOnStack; }
bool argsOnStackHaveFixedSize() const { return true; }
//
// These methods compute offsets using the frame contents for a
// particular function. The frame contents are obtained from the
// MachineCodeInfoForMethod object for the given function.
//
int getFirstIncomingArgOffset (MachineCodeForMethod& mcInfo,
bool& growUp) const
{
growUp = true; // arguments area grows upwards
return FirstIncomingArgOffsetFromFP;
}
int getFirstOutgoingArgOffset (MachineCodeForMethod& mcInfo,
bool& growUp) const
{
growUp = true; // arguments area grows upwards
return FirstOutgoingArgOffsetFromSP;
}
int getFirstOptionalOutgoingArgOffset(MachineCodeForMethod& mcInfo,
bool& growUp)const
{
growUp = true; // arguments area grows upwards
return FirstOptionalOutgoingArgOffsetFromSP;
}
int getFirstAutomaticVarOffset (MachineCodeForMethod& mcInfo,
bool& growUp) const;
int getRegSpillAreaOffset (MachineCodeForMethod& mcInfo,
bool& growUp) const;
int getTmpAreaOffset (MachineCodeForMethod& mcInfo,
bool& growUp) const;
int getDynamicAreaOffset (MachineCodeForMethod& mcInfo,
bool& growUp) const;
//
// These methods specify the base register used for each stack area
// (generally FP or SP)
//
virtual int getIncomingArgBaseRegNum() const {
return (int) target.getRegInfo().getFramePointer();
}
virtual int getOutgoingArgBaseRegNum() const {
return (int) target.getRegInfo().getStackPointer();
}
virtual int getOptionalOutgoingArgBaseRegNum() const {
return (int) target.getRegInfo().getStackPointer();
}
virtual int getAutomaticVarBaseRegNum() const {
return (int) target.getRegInfo().getFramePointer();
}
virtual int getRegSpillAreaBaseRegNum() const {
return (int) target.getRegInfo().getFramePointer();
}
virtual int getDynamicAreaBaseRegNum() const {
return (int) target.getRegInfo().getStackPointer();
}
private:
// All stack addresses must be offset by 0x7ff (2047) on Sparc V9.
static const int OFFSET = (int) 0x7ff;
static const int StackFrameSizeAlignment = 16;
static const int MinStackFrameSize = 176;
static const int NumFixedOutgoingArgs = 6;
static const int SizeOfEachArgOnStack = 8;
static const int StaticAreaOffsetFromFP = 0 + OFFSET;
static const int FirstIncomingArgOffsetFromFP = 128 + OFFSET;
static const int FirstOptionalIncomingArgOffsetFromFP = 176 + OFFSET;
static const int FirstOutgoingArgOffsetFromSP = 128 + OFFSET;
static const int FirstOptionalOutgoingArgOffsetFromSP = 176 + OFFSET;
};
//---------------------------------------------------------------------------
// class UltraSparcCacheInfo
//
// Purpose:
// Interface to cache parameters for the UltraSPARC.
// Just use defaults for now.
//---------------------------------------------------------------------------
class UltraSparcCacheInfo: public MachineCacheInfo {
public:
UltraSparcCacheInfo(const TargetMachine &T) : MachineCacheInfo(T) {}
};
//---------------------------------------------------------------------------
// class UltraSparcMachine
//
// Purpose:
// Primary interface to machine description for the UltraSPARC.
// Primarily just initializes machine-dependent parameters in
// class TargetMachine, and creates machine-dependent subclasses
// for classes such as InstrInfo, SchedInfo and RegInfo.
//---------------------------------------------------------------------------
class UltraSparc : public TargetMachine {
private:
UltraSparcInstrInfo instrInfo;
UltraSparcSchedInfo schedInfo;
UltraSparcRegInfo regInfo;
UltraSparcFrameInfo frameInfo;
UltraSparcCacheInfo cacheInfo;
public:
UltraSparc();
virtual const MachineInstrInfo &getInstrInfo() const { return instrInfo; }
virtual const MachineSchedInfo &getSchedInfo() const { return schedInfo; }
virtual const MachineRegInfo &getRegInfo() const { return regInfo; }
virtual const MachineFrameInfo &getFrameInfo() const { return frameInfo; }
virtual const MachineCacheInfo &getCacheInfo() const { return cacheInfo; }
//
// addPassesToEmitAssembly - Add passes to the specified pass manager to get
// assembly langage code emited. For sparc, we have to do ...
//
virtual void addPassesToEmitAssembly(PassManager &PM, std::ostream &Out);
private:
Pass *getFunctionAsmPrinterPass(PassManager &PM, std::ostream &Out);
Pass *getModuleAsmPrinterPass(PassManager &PM, std::ostream &Out);
Pass *getEmitBytecodeToAsmPass(std::ostream &Out);
};
#endif