Commit Graph

6462 Commits

Author SHA1 Message Date
Sanjoy Das
21b2edfeae IRCE: generalize to handle loops with decreasing induction variables.
IRCE can now split the iteration space for loops like:

   for (i = n; i >= 0; i--)
     a[i + k] = 42; // bounds check on access



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230618 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-26 08:19:31 +00:00
Ramkumar Ramachandra
e10581ac39 PlaceSafepoints: use IRBuilder helpers
Use the IRBuilder helpers for gc.statepoint and gc.result, instead of
coding the construction by hand. Note that the gc.statepoint IRBuilder
handles only CallInst, not InvokeInst; retain that part of hand-coding.

Differential Revision: http://reviews.llvm.org/D7518

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230591 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-26 00:35:56 +00:00
Sanjay Patel
8e3ef7f186 only propagate equality comparisons of FP values that we are certain are non-zero
This is a follow-on to r227491 which tightens the check for propagating FP
values. If a non-constant value happens to be a zero, we would hit the same
bug as before.

Bug noted and patch suggested by Eli Friedman.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230564 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-25 22:46:08 +00:00
JF Bastien
6fec24744f InstCombine: extract instead of shuffle when performing vector/array type punning
Summary: SROA generates code that isn't quite as easy to optimize and contains unusual-sized shuffles, but that code is generally correct. As discussed in D7487 the right place to clean things up is InstCombine, which will pick up the type-punning pattern and transform it into a more obvious bitcast+extractelement, while leaving the other patterns SROA encounters as-is.

Test Plan: make check

Reviewers: jvoung, chandlerc

Subscribers: llvm-commits

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230560 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-25 22:30:51 +00:00
Peter Collingbourne
d63e5ad9c5 LowerBitSets: Align referenced globals.
This change aligns globals to the next highest power of 2 bytes, up to a
maximum of 128. This makes it more likely that we will be able to compress
bit sets with a greater alignment. In many more cases, we can now take
advantage of a new optimization also introduced in this patch that removes
bit set checks if the bit set is all ones.

The 128 byte maximum was found to provide the best tradeoff between instruction
overhead and data overhead in a recent build of Chromium. It allows us to
remove ~2.4MB of instructions at the cost of ~250KB of data.

Differential Revision: http://reviews.llvm.org/D7873

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230540 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-25 20:42:41 +00:00
Sanjoy Das
a0a0b40aa3 Bugfix: SCEVExpander incorrectly marks increment operations as no-wrap
(The change was landed in r230280 and caused the regression PR22674.
This version contains a fix and a test-case for PR22674).
    
When emitting the increment operation, SCEVExpander marks the
operation as nuw or nsw based on the flags on the preincrement SCEV.
This is incorrect because, for instance, it is possible that {-6,+,1}
is <nuw> while {-6,+,1}+1 = {-5,+,1} is not.
    
This change teaches SCEV to mark the increment as nuw/nsw only if it
can explicitly prove that the increment operation won't overflow.
    
Apart from the attached test case, another (more realistic)
manifestation of the bug can be seen in
Transforms/IndVarSimplify/pr20680.ll.

Differential Revision: http://reviews.llvm.org/D7778



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230533 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-25 20:02:59 +00:00
Sanjay Patel
d2c64e2df9 Fix really obscure bug in CannotBeNegativeZero() (PR22688)
With a diabolically crafted test case, we could recurse
through this code and return true instead of false.

The larger engineering crime is the use of magic numbers. 
Added FIXME comments for those.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230515 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-25 18:00:15 +00:00
Charles Davis
fba7e30f0f [IC] Turn non-null MD on pointer loads to range MD on integer loads.
Summary:
This change fixes the FIXME that you recently added when you committed
(a modified version of) my patch.  When `InstCombine` combines a load and
store of an pointer to those of an equivalently-sized integer, it currently
drops any `!nonnull` metadata that might be present.  This change replaces
`!nonnull` metadata with `!range !{ 1, -1 }` metadata instead.

Reviewers: chandlerc

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D7621

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230462 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-25 05:10:25 +00:00
Peter Collingbourne
0bf03cb473 LowerBitSets: Introduce global layout builder.
The builder is based on a layout algorithm that tries to keep members of
small bit sets together. The new layout compresses Chromium's bit sets to
around 15% of their original size.

Differential Revision: http://reviews.llvm.org/D7796

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230394 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-24 23:17:02 +00:00
Hans Wennborg
b499b73e30 Revert r230280: "Bugfix: SCEVExpander incorrectly marks increment operations as no-wrap"
This caused PR22674, failing this assert:

Instructions.h:2281: llvm::Value* llvm::PHINode::getOperand(unsigned int) const: Assertion `i_nocapture < OperandTraits<PHINode>::operands(this) && "getOperand() out of range!"' failed.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230341 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-24 16:19:29 +00:00
Sanjoy Das
f922d9cfe4 New instcombine rule: max(~a,~b) -> ~min(a, b)
This case is interesting because ScalarEvolutionExpander lowers min(a,
b) as ~max(~a,~b).  I think the profitability heuristics can be made
more clever/aggressive, but this is a start.

Differential Revision: http://reviews.llvm.org/D7821



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230285 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-24 00:08:41 +00:00
Sanjoy Das
8d16a81c33 Bugfix: SCEVExpander incorrectly marks increment operations as no-wrap
When emitting the increment operation, SCEVExpander marks the
operation as nuw or nsw based on the flags on the preincrement SCEV.
This is incorrect because, for instance, it is possible that {-6,+,1}
is <nuw> while {-6,+,1}+1 = {-5,+,1} is not.

This change teaches SCEV to mark the increment as nuw/nsw only if it
can explicitly prove that the increment operation won't overflow.

Apart from the attached test case, another (more realistic) manifestation
of the bug can be seen in Transforms/IndVarSimplify/pr20680.ll.

NOTE: this change was landed with an incorrect commit message in
rL230275 and was reverted for that reason in rL230279.  This commit
message is the correct one.

Differential Revision: http://reviews.llvm.org/D7778



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230280 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-23 23:22:58 +00:00
Sanjoy Das
69048edf8a Revert 230275.
230275 got committed with an incorrect commit message due to a mixup
on my side.  Will re-land in a few moments with the correct commit
message.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230279 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-23 23:13:22 +00:00
Sanjoy Das
7ebbc8de2f Fix bug 22641
The bug was a result of getPreStartForExtend interpreting nsw/nuw
flags on an add recurrence more strongly than is legal.  {S,+,X}<nsw>
implies S+X is nsw only if the backedge of the loop is taken at least
once.

Differential Revision: http://reviews.llvm.org/D7808



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230275 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-23 22:55:13 +00:00
Chad Rosier
6229219f7e Prevent hoisting fmul from THEN/ELSE to IF if there is fmsub/fmadd opportunity.
This patch adds the isProfitableToHoist API.  For AArch64, we want to prevent a
fmul from being hoisted in cases where it is more profitable to form a
fmsub/fmadd.

Phabricator Review: http://reviews.llvm.org/D7299
Patch by Lawrence Hu <lawrence@codeaurora.org>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230241 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-23 19:15:16 +00:00
Mehdi Amini
2bd4b63e7a InstSimplify: simplify 0 / X if nnan and nsz
From: Fiona Glaser <fglaser@apple.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230238 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-23 18:30:25 +00:00
Sanjoy Das
c5e1132ac2 IRCE: use SCEVs instead of llvm::Value's for intermediate
calculations.  Semantically non-functional change.

This gets rid of some of the SCEV -> Value -> SCEV round tripping and
the Construct(SMin|SMax)Of and MaybeSimplify helper routines.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230150 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-21 22:07:32 +00:00
Philip Reames
7a62a2a5ae [PlaceSafepoints] Adjust enablement logic to default to off and be GC configurable per GC
Previously, this pass ran over every function in the Module if added to the pass order.  With this change, it runs only over those with a GC attribute where the GC explicitly opts in.  A GC can also choose which of entry safepoint polls, backedge safepoint polls, and call safepoints it wants.  I hope to get these exposed as checks on the GCStrategy at some point, but for now, the checks are manual string comparisons.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230097 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-21 00:09:09 +00:00
Benjamin Kramer
d889ad2ab8 LoopRotate: When reconstructing loop simplify form don't split edges from indirectbrs.
Yet another chapter in the endless story. While this looks like we leave
the loop in a non-canonical state this replicates the logic in
LoopSimplify so it doesn't diverge from the canonical form in any way.

PR21968

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230058 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-20 20:49:25 +00:00
Peter Collingbourne
5a81e14385 Introduce bitset metadata format and bitset lowering pass.
This patch introduces a new mechanism that allows IR modules to co-operatively
build pointer sets corresponding to addresses within a given set of
globals. One particular use case for this is to allow a C++ program to
efficiently verify (at each call site) that a vtable pointer is in the set
of valid vtable pointers for the class or its derived classes. One way of
doing this is for a toolchain component to build, for each class, a bit set
that maps to the memory region allocated for the vtables, such that each 1
bit in the bit set maps to a valid vtable for that class, and lay out the
vtables next to each other, to minimize the total size of the bit sets.

The patch introduces a metadata format for representing pointer sets, an
'@llvm.bitset.test' intrinsic and an LTO lowering pass that lays out the globals
and builds the bitsets, and documents the new feature.

Differential Revision: http://reviews.llvm.org/D7288

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230054 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-20 20:30:47 +00:00
Philip Reames
ef6e26ea1f Bugfix for 229954
Before calling Function::getGC to test for enablement, we need to make sure there's actually a GC at all via Function::hasGC.  Otherwise, we'd crash on functions without a GC.  Thankfully, this only mattered if you manually scheduled the pass, but still, oops. :(



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230040 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-20 18:56:14 +00:00
Hal Finkel
5ecf528fc2 [InstCombine] Remove unnecessary variable indexing into single-element arrays
This change addresses a deficiency pointed out in PR22629. To copy from the bug
report:

[from the bug report]

Consider this code:

int f(int x) {
  int a[] = {12};
  return a[x];
}

GCC knows to optimize this to

movl     $12, %eax
ret

The code generated by recent Clang at -O3 is:

movslq   %edi, %rax
movl     .L_ZZ1fiE1a(,%rax,4), %eax
retq

.L_ZZ1fiE1a:
  .long    12                      # 0xc

[end from the bug report]

This definitely seems worth fixing. I've also seen this kind of code before (as
the base case of generic vector wrapper templates with one element).

The general idea is to look at the GEP feeding a load or a store, which has
some variable as its first non-zero index, and determine if that index must be
zero (or else an out-of-bounds access would occur). We can do this for allocas
and globals with constant initializers where we know the maximum size of the
underlying object. When we find such a GEP, we create a new one for the memory
access with that first variable index replaced with a constant zero.

Even if we can't eliminate the memory access (and sometimes we can't), it is
still useful because it removes unnecessary indexing calculations.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229959 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-20 03:05:53 +00:00
Philip Reames
e807289468 Adjust enablement of RewriteStatepointsForGC
When back merging the changes in 229945 I noticed that I forgot to mark the test cases with the appropriate GC.  We want the rewriting to be off by default (even when manually added to the pass order), not on-by default.  To keep the current test working, mark them as using the statepoint-example GC and whitelist that GC.  

Longer term, we need a better selection mechanism here for both actual usage and testing.  As I migrate more tests to the in tree version of this pass, I will probably need to update the enable/disable logic as well. 





git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229954 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-20 02:34:49 +00:00
Philip Reames
673db11fdb Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.

This patch is setting the stage for work to continue in tree.  In particular, there are known naming and style violations in the current patch.  I'll try to get those resolved over the next week or so.  As I touch each area to make style changes, I need to make sure we have adequate testing in place.  As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.

The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future.  Note that the current change doesn't actually contain a useful liveness analysis.  It was seperated into a followup change as the code wasn't ready to be shared.  Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. 
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.




git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229945 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-20 01:06:44 +00:00
Michael Gottesman
391935a017 [objc-arc-contract] We can not move retains over instructions which can not conservatively be proven to not decrement the retain's RCIdentity.
I also cleaned up the code to make it more understandable for mere mortals.

<rdar://problem/19853758>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229937 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-20 00:02:49 +00:00
Ahmed Bougacha
5898fc70ec [ARM] Re-re-apply VLD1/VST1 base-update combine.
This re-applies r223862, r224198, r224203, and r224754, which were
reverted in r228129 because they exposed Clang misalignment problems
when self-hosting.

The combine caused the crashes because we turned ISD::LOAD/STORE nodes
to ARMISD::VLD1/VST1_UPD nodes.  When selecting addressing modes, we
were very lax for the former, and only emitted the alignment operand
(as in "[r1:128]") when it was larger than the standard alignment of
the memory type.

However, for ARMISD nodes, we just used the MMO alignment, no matter
what.  In our case, we turned ISD nodes to ARMISD nodes, and this
caused the alignment operands to start being emitted.

And that's how we exposed alignment problems that were ignored before
(but I believe would have been caught with SCTRL.A==1?).

To fix this, we can just mirror the hack done for ISD nodes:  only
take into account the MMO alignment when the access is overaligned.

Original commit message:
We used to only combine intrinsics, and turn them into VLD1_UPD/VST1_UPD
when the base pointer is incremented after the load/store.

We can do the same thing for generic load/stores.

Note that we can only combine the first load/store+adds pair in
a sequence (as might be generated for a v16f32 load for instance),
because other combines turn the base pointer addition chain (each
computing the address of the next load, from the address of the last
load) into independent additions (common base pointer + this load's
offset).

rdar://19717869, rdar://14062261.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229932 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-19 23:52:41 +00:00
Rafael Espindola
1b4da6c8ce Avoid conversion to float when creating ConstantDataArray/ConstantDataVector.
Patch by Raoux, Thomas F!

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229864 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-19 16:08:20 +00:00
Igor Laevsky
b05b70bab5 Add few simple tests to check statepoint placement for invoke instructions.
Differential Revision: http://reviews.llvm.org/D7535



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229842 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-19 11:39:04 +00:00
Chandler Carruth
a8fb39af83 [x86,sdag] Two interrelated changes to the x86 and sdag code.
First, don't combine bit masking into vector shuffles (even ones the
target can handle) once operation legalization has taken place. Custom
legalization of vector shuffles may exist for these patterns (making the
predicate return true) but that custom legalization may in some cases
produce the exact bit math this matches. We only really want to handle
this prior to operation legalization.

However, the x86 backend, in a fit of awesome, relied on this. What it
would do is mark VSELECTs as expand, which would turn them into
arithmetic, which this would then match back into vector shuffles, which
we would then lower properly. Amazing.

Instead, the second change is to teach the x86 backend to directly form
vector shuffles from VSELECT nodes with constant conditions, and to mark
all of the vector types we support lowering blends as shuffles as custom
VSELECT lowering. We still mark the forms which actually support
variable blends as *legal* so that the custom lowering is bypassed, and
the legal lowering can even be used by the vector shuffle legalization
(yes, i know, this is confusing. but that's how the patterns are
written).

This makes the VSELECT lowering much more sensible, and in fact should
fix a bunch of bugs with it. However, as you'll see in the test cases,
right now what it does is point out the *hilarious* deficiency of the
new vector shuffle lowering when it comes to blends. Fortunately, my
very next patch fixes that. I can't submit it yet, because that patch,
somewhat obviously, forms the exact and/or pattern that the DAG combine
is matching here! Without this patch, teaching the vector shuffle
lowering to produce the right code infloops in the DAG combiner. With
this patch alone, we produce terrible code but at least lower through
the right paths. With both patches, all the regressions here should be
fixed, and a bunch of the improvements (like using 2 shufps with no
memory loads instead of 2 andps with memory loads and an orps) will
stay. Win!

There is one other change worth noting here. We had hilariously wrong
vectorization cost estimates for vselect because we fell through to the
code path that assumed all "expand" vector operations are scalarized.
However, the "expand" lowering of VSELECT is vector bit math, most
definitely not scalarized. So now we go back to the correct if horribly
naive cost of "1" for "not scalarized". If anyone wants to add actual
modeling of shuffle costs, that would be cool, but this seems an
improvement on its own. Note the removal of 16 and 32 "costs" for doing
a blend. Even in SSE2 we can blend in fewer than 16 instructions. ;] Of
course, we don't right now because of OMG bad code, but I'm going to fix
that. Next patch. I promise.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229835 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-19 10:36:19 +00:00
Sanjoy Das
6da5a456f4 Partial fix for bug 22589
Don't spend the entire iteration space in the scalar loop prologue if
computing the trip count overflows.  This change also gets rid of the
backedge check in the prologue loop and the extra check for
overflowing trip-count.

Differential Revision: http://reviews.llvm.org/D7715



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229731 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-18 19:32:25 +00:00
Elena Demikhovsky
c0f91e1081 Minor fix after 229495.
Removed metadata and function attributes from the test.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229647 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-18 08:09:28 +00:00
Adam Nemet
47985fb7cd [LoopAccesses] Modify test to also check symbolic strides with memchecks
See the comment in the code.

This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229627 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-18 03:43:32 +00:00
Akira Hatanaka
5506e22865 [InstCombine] Do not insert a GEP instruction before a landingpad instruction.
InstCombiner::visitGetElementPtrInst was using getFirstNonPHI to compute the
insertion point, which caused the verifier to complain when a GEP was inserted
before a landingpad instruction. This commit fixes it to use getFirstInsertionPt
instead.

rdar://problem/19394964


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229619 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-18 03:30:11 +00:00
Hal Finkel
8a85dee989 [BDCE] Don't forget uses of root instructions seen before the instruction itself
When visiting the initial list of "root" instructions (those which must always
be alive), for those that are integer-valued (such as invokes returning an
integer), we mark their bits as (initially) all dead (we might, obviously, find
uses of those bits later, but all bits are assumed dead until proven
otherwise). Don't do so, however, if we're already seen a use of those bits by
another root instruction (such as a store).

Fixes a miscompile of the sanitizer unit tests on x86_64.

Also, add a debug line for visiting the root instructions, and remove a debug
line which tried to print instructions being removed (printing dead
instructions is dangerous, and can sometimes crash).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229618 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-18 03:12:28 +00:00
Elena Demikhovsky
b70bdd9034 Fixed a bug in store sinking.
The problem was in store-sink barrier check.

Store sink barrier should be checked for ModRef (read-write) mode.

http://llvm.org/bugs/show_bug.cgi?id=22613



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229495 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-17 13:10:05 +00:00
Hal Finkel
5b43c8551e [BDCE] Add a bit-tracking DCE pass
BDCE is a bit-tracking dead code elimination pass. It is based on ADCE (the
"aggressive DCE" pass), with the added capability to track dead bits of integer
valued instructions and remove those instructions when all of the bits are
dead.

Currently, it does not actually do this all-bits-dead removal, but rather
replaces the instruction's uses with a constant zero, and lets instcombine (and
the later run of ADCE) do the rest. Because we essentially get a run of ADCE
"for free" while tracking the dead bits, we also do what ADCE does and removes
actually-dead instructions as well (this includes instructions newly trivially
dead because all bits were dead, but not all such instructions can be removed).

The motivation for this is a case like:

int __attribute__((const)) foo(int i);
int bar(int x) {
  x |= (4 & foo(5));
  x |= (8 & foo(3));
  x |= (16 & foo(2));
  x |= (32 & foo(1));
  x |= (64 & foo(0));
  x |= (128& foo(4));
  return x >> 4;
}

As it turns out, if you order the bit-field insertions so that all of the dead
ones come last, then instcombine will remove them. However, if you pick some
other order (such as the one above), the fact that some of the calls to foo()
are useless is not locally obvious, and we don't remove them (without this
pass).

I did a quick compile-time overhead check using sqlite from the test suite
(Release+Asserts). BDCE took ~0.4% of the compilation time (making it about
twice as expensive as ADCE).

I've not looked at why yet, but we eliminate instructions due to having
all-dead bits in:
External/SPEC/CFP2006/447.dealII/447.dealII
External/SPEC/CINT2006/400.perlbench/400.perlbench
External/SPEC/CINT2006/403.gcc/403.gcc
MultiSource/Applications/ClamAV/clamscan
MultiSource/Benchmarks/7zip/7zip-benchmark

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229462 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-17 01:36:59 +00:00
Mehdi Amini
e97c675022 InstCombine: fold more cases of (fp_to_u/sint (u/sint_to_fp val))
Fixes radar 15486701.

From: Fiona Glaser <fglaser@apple.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229437 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-16 21:47:54 +00:00
Mehdi Amini
be55a79941 Tests: reformat sitofp.ll and use FileCheck
From: Fiona Glaser <fglaser@apple.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229436 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-16 21:47:50 +00:00
James Molloy
2a7fbb1927 [LoopReroll] Relax some assumptions a little.
We won't find a root with index zero in any loop that we are able to reroll.
However, we may find one in a non-rerollable loop, so bail gracefully instead
of failing hard.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229406 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-16 17:02:00 +00:00
James Molloy
4b739069e4 [LoopReroll] Don't crash on dead code
If a PHI has no users, don't crash; bail gracefully. This shouldn't
happen often, but we can make no guarantees that previous passes didn't leave
dead code around.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229405 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-16 17:01:52 +00:00
David Majnemer
6de0a12927 IR: Properly return nullptr when getAggregateElement is out-of-bounds
We didn't properly handle the out-of-bounds case for
ConstantAggregateZero and UndefValue.  This would manifest as a crash
when the constant folder was asked to fold a load of a constant global
whose struct type has no operands.

This fixes PR22595.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229352 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-16 04:02:09 +00:00
David Blaikie
16035d6c0c FileCheck-ize a test to make it easier to migrate to typeless pointers
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229278 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-15 04:14:00 +00:00
David Blaikie
51e38bc096 Update a test to make it easier to migrate to untyped pointers
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229277 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-15 04:13:58 +00:00
David Blaikie
95fa98330e Update a test to use FileCheck so it's easier to migrate to future typeless pointer changes
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229276 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-15 04:13:57 +00:00
David Blaikie
7af26dce0d Reformat test case to be easier to migrate to typeless pointers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229275 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-15 04:13:53 +00:00
Ramkumar Ramachandra
0608cec657 InstCombine: propagate deref via new addDereferenceableAttr
The "dereferenceable" attribute cannot be added via .addAttribute(),
since it also expects a size in bytes. AttrBuilder#addAttribute or
AttributeSet#addAttribute is wrapped by classes Function, InvokeInst,
and CallInst. Add corresponding wrappers to
AttrBuilder#addDereferenceableAttr.

Having done this, propagate the dereferenceable attribute via
gc.relocate, adding a test to exercise it. Note that -datalayout is
required during execution over and above -instcombine, because
InstCombine only optionally requires DataLayoutPass.

Differential Revision: http://reviews.llvm.org/D7510

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229265 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-14 19:37:54 +00:00
Philip Reames
d777c2c0c0 [InstCombine] When canonicalizing gep indices, prefer zext when possible
If we know that the sign bit of a value being sign extended is zero, we can use a zero extension instead.  This is motivated by the fact that zero extensions are generally cheaper on x86 (and most other architectures?).  We already apply a similar transform in DAGCombine, this just extends that to the IR level.

This comes up when we eagerly canonicalize gep indices to the width of a machine register (i64 on x86_64). To do so, we insert sign extensions (sext) to promote smaller types. 

Differential Revision: http://reviews.llvm.org/D7255



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229189 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-14 00:05:36 +00:00
Andrea Di Biagio
d25126faae [InstCombine] Fix regression introduced at r227197.
This patch fixes a problem I accidentally introduced in an instruction combine
on select instructions added at r227197. That revision taught the instruction
combiner how to fold a cttz/ctlz followed by a icmp plus select into a single
cttz/ctlz with flag 'is_zero_undef' cleared.

However, the new rule added at r227197 would have produced wrong results in the
case where a cttz/ctlz with flag 'is_zero_undef' cleared was follwed by a
zero-extend or truncate. In that case, the folded instruction would have
been inserted in a wrong location thus leaving the CFG in an inconsistent
state.

This patch fixes the problem and add two reproducible test cases to
existing test 'InstCombine/select-cmp-cttz-ctlz.ll'.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229124 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-13 16:33:34 +00:00
Andrea Di Biagio
59d115311a [CodeGenPrepare] Removed duplicate logic. SimplifyCFG already knows how to speculate calls to cttz/ctlz.
SimplifyCFG now knows how to speculate calls to intrinsic cttz/ctlz that are
'cheap' for the target. Therefore, some of the logic in CodeGenPrepare
that was originally added at revision 224899 can now be removed.

This patch is basically a no functional change. It removes the duplicated
logic in CodeGenPrepare and converts all the existing target specific tests
for cttz/ctlz into SimplifyCFG tests.

Differential Revision: http://reviews.llvm.org/D7608


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229105 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-13 14:15:48 +00:00
James Molloy
acbbf932e9 [SimplifyCFG] Add test for r229099
Add extra test that was accidentally not staged.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229101 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-13 11:08:40 +00:00
Chandler Carruth
25fa343bd8 [unroll] Concede defeat and disable the unroll analyzer for now.
The issues with the new unroll analyzer are more fundamental than code
cleanup, algorithm, or data structure changes. I've sent an email to the
original commit thread with details and a proposal for how to redesign
things. I'm disabling this for now so that we don't spend time
debugging issues with it in its current state.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229064 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-13 05:31:46 +00:00
Michael Liao
4235574ce3 [InstCombine] Fix a bug when combining icmp from ptrtoint
- First, there's a crash when we try to combine that pointers into `icmp`
  directly by creating a `bitcast`, which is invalid if that two pointers are
  from different address spaces.

- It's not always appropriate to cast one pointer to another if they are from
  different address spaces as that is not no-op cast. Instead, we only combine
  `icmp` from `ptrtoint` if that two pointers are of the same address space.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229063 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-13 04:51:26 +00:00
Chandler Carruth
a768c4a096 [IC] Fix a bug with the instcombine canonicalizing of loads and
propagating of metadata.

We were propagating !nonnull metadata even when the newly formed load is
no longer of a pointer type. This is clearly broken and results in LLVM
failing the verifier and aborting. This patch just restricts the
propagation of !nonnull metadata to when we actually have a pointer
type.

This bug report and the initial version of this patch was provided by
Charles Davis! Many thanks for finding this!

We still need to add logic to round-trip the metadata correctly if we
combine from pointer types to integer types and then back by using range
metadata for the integer type loads. But this is the minimal and safe
version of the patch, which is important so we can backport it into 3.6.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229029 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-13 02:30:01 +00:00
Olivier Sallenave
5f235de01b Check interleaving without relying on debug output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229027 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-13 02:13:57 +00:00
Michael Zolotukhin
cd35fcecc2 Testcase for r228988.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228995 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-13 00:35:45 +00:00
NAKAMURA Takumi
37fc1833a8 llvm/test/Transforms/LoopVectorize/PowerPC/small-loop-rdx.ll REQUIRES +Asserts due to -debug.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228989 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-13 00:21:34 +00:00
Olivier Sallenave
90e069dc29 Change max interleave factor to 12 for POWER7 and POWER8.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228973 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-12 22:57:58 +00:00
Bjorn Steinbrink
53a7b568b2 Fix a crash in the assumption cache when inlining indirect function calls
Summary:
Instances of the AssumptionCache are per function, so we can't re-use
the same AssumptionCache instance when recursing in the CallAnalyzer to
analyze a different function. Instead we have to pass the
AssumptionCacheTracker to the CallAnalyzer so it can get the right
AssumptionCache on demand.

Reviewers: hfinkel

Subscribers: llvm-commits, hans

Differential Revision: http://reviews.llvm.org/D7533

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228957 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-12 21:04:22 +00:00
Benjamin Kramer
82f9916923 Update test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228956 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-12 20:40:19 +00:00
Benjamin Kramer
d038a7fe67 InstCombine: Allow folding of xor into icmp by changing the predicate for vectors
The loop vectorizer can create this pattern.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228954 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-12 20:26:46 +00:00
Michael Zolotukhin
5513166316 Add a testcase for r228432.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228951 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-12 19:57:24 +00:00
James Molloy
28a123abaf [LoopRerolling] Be more forgiving with instruction order.
We can't solve the full subgraph isomorphism problem. But we can
allow obvious cases, where for example two instructions of different
types are out of order. Due to them having different types/opcodes,
there is no ambiguity.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228931 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-12 15:54:14 +00:00
Andrea Di Biagio
44926033f6 [TTI] Teach the cost heuristic how to query TLI to check if a zext/trunc is 'free' for the target.
Now that SimplifyCFG uses TTI for the cost heuristic, we can teach BasicTTIImpl
how to query TLI in order to get a more accurate cost for truncates and
zero-extends.

Before this patch, the basic cost heuristic in TargetTransformInfoImplCRTPBase
would have conservatively returned a 'default' TCC_Basic for all zero-extends,
and TCC_Free for truncates on native types.

This patch improves the heuristic so that we query TLI (if available) to get
more accurate answers. If TLI is available, then methods 'isZExtFree' and
'isTruncateFree' can be used to check if a zext/trunc is free for the target.

Added more test cases to SimplifyCFG/X86/speculate-cttz-ctlz.ll.
With this change, SimplifyCFG is now able to speculate a 'cheap' cttz/ctlz
immediately followed by a free zext/trunc.

Differential Revision: http://reviews.llvm.org/D7585


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228923 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-12 14:17:24 +00:00
Chandler Carruth
ffc97a6ae1 [slp] Fix a nasty bug in the SLP vectorizer that Joerg pointed out.
Apparently some code finally started to tickle this after my
canonicalization changes to instcombine.

The bug stems from trying to form a vector type out of scalars that
aren't compatible at all. In this example, from x86_mmx values. The code
in the vectorizer that checks for reasonable types whas checking for
aggregates or vectors, but there are lots of other types that should
just never reach the vectorizer.

Debugging this was made more confusing by the lie in an assert in
VectorType::get() -- it isn't that the types are *primitive*. The types
must be integer, pointer, or floating point types. No other types are
allowed.

I've improved the assert and added a helper to the vectorizer to handle
the element type validity checks. It now re-uses the VectorType static
function and then further excludes weird target-specific types that we
probably shouldn't be touching here (x86_fp80 and ppc_fp128). Neither of
these are really reachable anyways (neither 80-bit nor 128-bit things
will get vectorized) but it seems better to just eagerly exclude such
nonesense.

I've added a test case, but while it definitely covers two of the paths
through this code there may be more paths that would benefit from test
coverage. I'm not familiar enough with the SLP vectorizer to synthesize
test cases for all of these, but was able to update the code itself by
inspection.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228899 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-12 02:30:56 +00:00
Tim Northover
7f75841a73 DeadArgElim: aggregate Return assessment properly.
I mistakenly thought the liveness of each "RetVal(F, i)" depended only on F. It
actually depends on the index too, which means we need to be careful about how
the results are combined before return. In particular if a single Use returns
Live, that counts for the entire object, at the granularity we're considering.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228885 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-11 23:13:11 +00:00
Mehdi Amini
23af697ae6 Reassociate: cannot negate a INT_MIN value
Summary:
When trying to canonicalize negative constants out of
multiplication expressions, we need to check that the
constant is not INT_MIN which cannot be negated.

Reviewers: mcrosier

Reviewed By: mcrosier

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D7286

From: Mehdi Amini <mehdi.amini@apple.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228872 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-11 19:54:44 +00:00
Andrea Di Biagio
f033db57e9 [TTI] Improved cost heuristic for cttz/ctlz calls.
This patch is a follow-up of r228826 (see code-review: D7506).

Now that SimplifyCFG uses TargetTransformInfo for cost analysis, we 
have to fix the cost heuristic for intrinsic calls to cttz/ctlz.

This patch defines method 'getIntrinsicCost' in BasicTTIImpl: now, BasicTTIImpl
queries TLI to check if a call to cttz/ctlz is cheap for the target.

Added test cases in Transforms/SimplifyCFG/X86 to verify that on x86,
SimplifyCFG only speculates a call to cttz/ctlz if it is cheap.

Differential Revision: http://reviews.llvm.org/D7554


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228829 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-11 14:22:18 +00:00
James Molloy
4de471dd0a [SimplifyCFG] Swap to using TargetTransformInfo for cost
analysis.

We're already using TTI in SimplifyCFG, so remove the hard-baked "cheapness"
heuristic and use TTI directly. Generally NFC intended, but we're using a slightly
different heuristic now so there is a slight test churn.

Test changes:
  * combine-comparisons-by-cse.ll: Removed unneeded branch check.
  * 2014-08-04-muls-it.ll: Test now doesn't branch but emits muleq.
  * coalesce-subregs.ll: Superfluous block check.
  * 2008-01-02-hoist-fp-add.ll: fadd is safe to speculate. Change to udiv.
  * PhiBlockMerge.ll: Superfluous CFG checking code. Main checks still present.
  * select-gep.ll: A variable GEP is not expensive, just TCC_Basic, according to the TTI.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228826 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-11 12:15:41 +00:00
James Molloy
caba7561ae [LoopReroll] Introduce the concept of DAGRootSets.
A DAGRootSet models an induction variable being used in a rerollable
loop. For example:

   x[i*3+0] = y1
   x[i*3+1] = y2
   x[i*3+2] = y3

   Base instruction -> i*3
                    +---+----+
                   /    |     \
               ST[y1]  +1     +2  <-- Roots
                        |      |
                      ST[y2] ST[y3]

There may be multiple DAGRootSets, for example:

   x[i*2+0] = ...   (1)
   x[i*2+1] = ...   (1)
   x[i*2+4] = ...   (2)
   x[i*2+5] = ...   (2)
   x[(i+1234)*2+5678] = ... (3)
   x[(i+1234)*2+5679] = ... (3)

This concept is similar to the "Scale" member used previously, but allows
multiple independent sets of roots based off the same induction variable.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228821 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-11 09:19:47 +00:00
Reid Kleckner
7c5e0c9851 Fix invalid LLVM IR in PruneEH tests
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-11 02:06:47 +00:00
Reid Kleckner
690248bf52 Don't promote asynch EH invokes of nounwind functions to calls
If the landingpad of the invoke is using a personality function that
catches asynch exceptions, then it can catch a trap.

Also add some landingpads to invalid LLVM IR test cases that lack them.

Over-the-shoulder reviewed by David Majnemer.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228782 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-11 01:23:16 +00:00
David Majnemer
78d0638594 EarlyCSE: Add check lines for test added in r228760
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228761 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-10 23:11:02 +00:00
David Majnemer
0f8bd667a1 EarlyCSE: It isn't safe to CSE across synchronization boundaries
This fixes PR22514.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228760 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-10 23:09:43 +00:00
Tim Northover
b613f8842e DeadArgElim: arguments affect all returned sub-values by default.
Unless we meet an insertvalue on a path from some value to a return, that value
will be live if *any* of the return's components are live, so all of those
components must be added to the MaybeLiveUses.

Previously we were deleting arguments if sub-value 0 turned out to be dead.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228731 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-10 19:49:18 +00:00
Michael Zolotukhin
261a3a361b Add a test case for new unrolling heuristics.
THe heuristics were added in r228265 and r228434.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228713 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-10 17:54:54 +00:00
Chandler Carruth
3e77df419d Revert r228556: InstCombine: propagate nonNull through assume
This commit isn't using the correct context, and is transfoming calls
that are operands to loads rather than calls that are operands to an
icmp feeding into an assume. I've replied on the original review thread
with a very reduced test case and some thoughts on how to rework this.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228677 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-10 08:07:32 +00:00
Ramkumar Ramachandra
69a5c89128 PlaceSafepoints: modernize gc.result.* -> gc.result
Differential Revision: http://reviews.llvm.org/D7516

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228625 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-09 23:00:40 +00:00
Philip Reames
d3f3d5f0d7 Introduce more tests for PlaceSafepoints
These tests the two optimizations for backedge insertion currently implemented and the split backedge flag which is currently off by default.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228617 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-09 22:10:15 +00:00
Philip Reames
2eace6ebc5 Minor test cleanup
a) add gc attribute
b) remove unused param



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228612 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-09 21:50:31 +00:00
Philip Reames
c016fa420f Add basic tests for PlaceSafepoints
This is just adding really simple tests which should have been part of the original submission.  When doing so, I discovered that I'd mistakenly removed required pieces when preparing the patch for upstream submission.  I fixed two such bugs in this submission.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228610 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-09 21:48:05 +00:00
Tim Northover
968ed6a5f0 DeadArgElim: fix mismatch in accounting of array return types.
Some parts of DeadArgElim were only considering the individual fields
of StructTypes separately, but others (where insertvalue &
extractvalue instructions occur) also looked into ArrayTypes.

This one is an actual bug; the mismatch can lead to an argument being
considered used by a return sub-value that isn't being tracked (and
hence is dead by default). It then gets incorrectly eliminated.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228559 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-09 01:21:00 +00:00
Tim Northover
c4af8c9467 DeadArgElim: assess uses of entire return value aggregate.
Previously, a non-extractvalue use of an aggregate return value meant
the entire return was considered live (the algorithm gave up
entirely). This was correct, but conservative. It's better to actually
look at that Use, making the analysis results apply to all sub-values
under consideration.

E.g.

  %val = call { i32, i32 } @whatever()
  [...]
  ret { i32, i32 } %val

The return is using the entire aggregate (sub-values 0 and 1). We can
still simplify @whatever if we can prove that this return is itself
unused.

Also unifies the logic slightly between aggregate and non-aggregate
cases..

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228558 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-09 01:20:53 +00:00
Ramkumar Ramachandra
5439a80dca InstCombine: propagate nonNull through assume
Make assume (load (call|invoke) != null) set nonNull return attribute
for the call and invoke. Also include tests.

Differential Revision: http://reviews.llvm.org/D7107

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228556 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-09 01:13:13 +00:00
Bjorn Steinbrink
61a16d2a16 Correctly combine alias.scope metadata by a union instead of intersecting
Summary:
The alias.scope metadata represents sets of things an instruction might
alias with. When generically combining the metadata from two
instructions the result must be the union of the original sets, because
the new instruction might alias with anything any of the original
instructions aliased with.

Reviewers: hfinkel

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D7490

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228525 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-08 17:07:14 +00:00
Benjamin Kramer
a54b82a9fe ValueTracking: Make isBytewiseValue simpler and more powerful at the same time.
Turns out there is a simpler way of checking that all bytes in a word are equal
than binary decomposition.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228503 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-07 19:29:02 +00:00
Bjorn Steinbrink
2dd5f23a1d Properly update AA metadata when performing call slot optimization
Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D7482

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228500 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-07 17:54:36 +00:00
Matthias Braun
2f2dec87fb InstCombine: Combine select sequences into a single select
Normalize
select(C0, select(C1, a, b), b) -> select((C0 & C1), a, b)
select(C0, a, select(C1, a, b)) -> select((C0 | C1), a, b)

This normal form may enable further combines on the And/Or and shortens
paths for the values. Many targets prefer the other but can go back
easily in CodeGen.

Differential Revision: http://reviews.llvm.org/D7399

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228409 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-06 17:49:36 +00:00
Michael Kuperstein
acd7b00be2 Teach isDereferenceablePointer() to look through bitcast constant expressions.
This fixes a LICM regression due to the new load+store pair canonicalization.

Differential Revision: http://reviews.llvm.org/D7411

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228284 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-05 09:15:37 +00:00
Cameron Esfahani
d02540a1d7 Value soft float calls as more expensive in the inliner.
Summary: When evaluating floating point instructions in the inliner, ask the TTI whether it is an expensive operation.  By default, it's not an expensive operation.  This keeps the default behavior the same as before.  The ARM TTI has been updated to return back TCC_Expensive for targets which don't have hardware floating point.

Reviewers: chandlerc, echristo

Reviewed By: echristo

Subscribers: t.p.northover, aemerson, llvm-commits

Differential Revision: http://reviews.llvm.org/D6936

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228263 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-05 02:09:33 +00:00
Tom Stellard
7c038bc15f StructurizeCFG: Use a reverse post-order traversal
We were previously doing a post-order traversal and operating on the
list in reverse, however this would occasionaly cause backedges for
loops to be visited before some of the other blocks in the loop.

We know use a reverse post-order traversal, which avoids this issue.

The reverse post-order traversal is not completely ideal, so we need
to manually fixup the list to ensure that inner loop backedges are
visited before outer loop backedges.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228186 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-04 20:49:44 +00:00
Renato Golin
ff01f89466 Reverting VLD1/VST1 base-updating/post-incrementing combining
This reverts patches 223862, 224198, 224203, and 224754, which were all
related to the vector load/store combining and were reverted/reaplied
a few times due to the same alignment problems we're seeing now.

Further tests, mainly self-hosting Clang, will be needed to reapply this
patch in the future.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228129 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-04 10:11:59 +00:00
Daniel Berlin
403050abcc Allow PRE to insert no-cost phi nodes
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228024 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-03 20:37:08 +00:00
Jingyue Wu
2918efd551 Add straight-line strength reduction to LLVM
Summary:
Straight-line strength reduction (SLSR) is implemented in GCC but not yet in
LLVM. It has proven to effectively simplify statements derived from an unrolled
loop, and can potentially benefit many other cases too. For example,

LLVM unrolls

  #pragma unroll
  foo (int i = 0; i < 3; ++i) {
    sum += foo((b + i) * s);
  }

into

  sum += foo(b * s);
  sum += foo((b + 1) * s);
  sum += foo((b + 2) * s);

However, no optimizations yet reduce the internal redundancy of the three
expressions:

  b * s
  (b + 1) * s
  (b + 2) * s

With SLSR, LLVM can optimize these three expressions into:

  t1 = b * s
  t2 = t1 + s
  t3 = t2 + s

This commit is only an initial step towards implementing a series of such
optimizations. I will implement more (see TODO in the file commentary) in the
near future. This optimization is enabled for the NVPTX backend for now.
However, I am more than happy to push it to the standard optimization pipeline
after more thorough performance tests.

Test Plan: test/StraightLineStrengthReduce/slsr.ll

Reviewers: eliben, HaoLiu, meheff, hfinkel, jholewinski, atrick

Reviewed By: jholewinski, atrick

Subscribers: karthikthecool, jholewinski, llvm-commits

Differential Revision: http://reviews.llvm.org/D7310

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228016 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-03 19:37:06 +00:00
Erik Eckstein
40d542097a Fix: SLPVectorizer crashes with assertion when vectorizing a cmp instruction.
The commit r225977 uncovered this bug. The problem was that the vectorizer tried to
read the second operand of an already deleted instruction.
The bug didn't show up before r225977 because the freed memory still contained a non-null pointer.
With r225977 deletion of instructions is delayed and the read operand pointer is always null.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227800 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-02 12:45:34 +00:00
Chandler Carruth
9a941b2028 [PM] Port SimplifyCFG to the new pass manager.
This should be sufficient to replace the initial (minor) function pass
pipeline in Clang with the new pass manager. I'll probably add an (off
by default) flag to do that just to ensure we can get extra testing.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227726 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-01 11:34:21 +00:00
Chandler Carruth
80c55f265d [PM] Port EarlyCSE to the new pass manager.
I've added RUN lines both to the basic test for EarlyCSE and the
target-specific test, as this serves as a nice test that the TTI layer
in the new pass manager is in fact working well.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227725 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-01 10:51:23 +00:00
Adrian Prantl
88deac4007 Inliner: Use replaceDbgDeclareForAlloca() instead of splicing the
instruction and generalize it to optionally dereference the variable.
Follow-up to r227544.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227604 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-30 19:37:48 +00:00
Hao Liu
2f45a3c252 Move the target specific test case arbitrary-induction-step.ll to test/Transforms/LoopVectorize/AArch64 folder.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227561 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-30 07:33:31 +00:00
Hao Liu
e7769db118 [LoopVectorize] Induction variables: support arbitrary constant step.
Previously, only -1 and +1 step values are supported for induction variables. This patch extends LV to support
arbitrary constant steps.
Initial patch by Alexey Volkov. Some bug fixes are added in the following version.

Differential Revision: http://reviews.llvm.org/D6051 and http://reviews.llvm.org/D7193


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227557 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-30 05:02:21 +00:00
Adrian Prantl
e413c8afe0 Fix PR22386. The inliner moves static allocas to the entry basic block
so we need to move the dbg.declare intrinsics that describe them, too.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227544 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-30 01:55:25 +00:00
Sanjay Patel
26c81cc870 [GVN] don't propagate equality comparisons of FP zero (PR22376)
In http://reviews.llvm.org/D6911, we allowed GVN to propagate FP equalities
to allow some simple value range optimizations. But that introduced a bug
when comparing to -0.0 or 0.0: these compare equal even though they are not
bitwise identical.

This patch disallows propagating zero constants in equality comparisons. 
Fixes: http://llvm.org/bugs/show_bug.cgi?id=22376

Differential Revision: http://reviews.llvm.org/D7257



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227491 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-29 20:51:49 +00:00
Philip Reames
61a76b2d4a Teach SplitBlockPredecessors how to handle landingpad blocks.
Patch by: Igor Laevsky <igor@azulsystems.com>

"Currently SplitBlockPredecessors generates incorrect code in case if basic block we are going to split has a landingpad. Also seems like it is fairly common case among it's users to conditionally call either SplitBlockPredecessors or SplitLandingPadPredecessors. Because of this I think it is reasonable to add this condition directly into SplitBlockPredecessors."

Differential Revision: http://reviews.llvm.org/D7157



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227390 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-28 23:06:47 +00:00
Michael Kuperstein
0906c8fc1c [X86] Reduce some 32-bit imuls into lea + shl
Reduce integer multiplication by a constant of the form k*2^c, where k is in {3,5,9} into a lea + shl. Previously it was only done for imulq on 64-bit platforms, but it makes sense for imull and 32-bit as well.

Differential Revision: http://reviews.llvm.org/D7196

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227308 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-28 14:08:22 +00:00
Elena Demikhovsky
b5c82c079a Fold fcmp in cases where value is provably non-negative. By Arch Robison.
This patch folds fcmp in some cases of interest in Julia. The patch adds a function CannotBeOrderedLessThanZero that returns true if a value is provably not less than zero. I.e. the function returns true if the value is provably -0, +0, positive, or a NaN. The patch extends InstructionSimplify.cpp to fold instances of fcmp where:
 - the predicate is olt or uge
 - the first operand is provably not less than zero
 - the second operand is zero
The motivation for handling these cases optimizing away domain checks for sqrt in Julia for common idioms such as sqrt(x*x+y*y)..

http://reviews.llvm.org/D6972



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227298 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-28 08:03:58 +00:00
Reid Kleckner
0935e7a79b Move EH personality type classification to Analysis/LibCallSemantics.h
Summary:
Also add enum types for __C_specific_handler and _CxxFrameHandler3 for
which we know a few things.

Reviewers: majnemer

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D7214

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227284 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-28 01:17:38 +00:00
Ahmed Bougacha
37be0d7c43 [SimplifyLibCalls] Don't confuse strcpy_chk for stpcpy_chk.
This was introduced in a faulty refactoring (r225640, mea culpa):
the tests weren't testing the return values, so, for both
__strcpy_chk and __stpcpy_chk, we would return the end of the
buffer (matching stpcpy) instead of the beginning (for strcpy).

The root cause was the prefix "__" being ignored when comparing,
which made us always pick LibFunc::stpcpy_chk.
Pass the LibFunc::Func directly to avoid this kind of error.
Also, make the testcases as explicit as possible to prevent this.

The now-useful testcases expose another, entangled, stpcpy problem,
with the further simplification.  This was introduced in a
refactoring (r225640) to match the original behavior.

However, this leads to problems when successive simplifications
generate several similar instructions, none of which are removed
by the custom replaceAllUsesWith.

For instance, InstCombine (the main user) doesn't erase the
instruction in its custom RAUW.  When trying to simplify say
__stpcpy_chk:
- first, an stpcpy is created (fortified simplifier),
- second, a memcpy is created (normal simplifier), but the
  stpcpy call isn't removed.
- third, InstCombine later revisits the instructions,
  and simplifies the first stpcpy to a memcpy.  We now have
  two memcpys.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227250 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-27 21:52:16 +00:00
Sanjoy Das
fdefc694cd Teach IRCE to look at branch weights when recognizing range checks
Splitting a loop to make range checks redundant is profitable only if
the range check "never" fails. Make this fact a part of recognizing a
range check -- a branch is a range check only if it is expected to
pass (via branch_weights metadata).

Differential Revision: http://reviews.llvm.org/D7192



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227249 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-27 21:38:12 +00:00
Andrea Di Biagio
944d86558e [InstCombine] Teach how to fold a select into a cttz/ctlz with the 'is_zero_undef' flag.
This patch teaches the Instruction Combiner how to fold a cttz/ctlz followed by
a icmp plus select into a single cttz/ctlz with flag 'is_zero_undef' cleared.

Added test InstCombine/select-cmp-cttz-ctlz.ll.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227197 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-27 15:58:14 +00:00
David Majnemer
90c42ddc62 LoopRotate: Don't walk the uses of a Constant
LoopRotate wanted to avoid live range interference by looking at the
uses of a Value in the loop latch and seeing if any lied outside of the
loop.  We would wrongly perform this operation on Constants.

This fixes PR22337.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227171 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-27 06:21:43 +00:00
Chad Rosier
13faabb6c5 Commoning of target specific load/store intrinsics in Early CSE.
Phabricator revision: http://reviews.llvm.org/D7121
Patch by Sanjin Sijaric <ssijaric@codeaurora.org>!

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227149 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-26 22:51:15 +00:00
Philip Reames
c1beae0d42 Add test cases for PRE w/volatile loads
These tests check that the combination of 227110 (cross block query inst) and 227112 (volatile load semantics) work together properly to allow PRE in cases where a loop contains a volatile access.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227146 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-26 22:40:44 +00:00
Hans Wennborg
325385a37f SimplifyCFG: Omit range checks for switch lookup tables when default is unreachable
The range check would get optimized away later, but we might as well not emit
them in the first place.

http://reviews.llvm.org/D6471

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227126 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-26 19:52:34 +00:00
Hans Wennborg
d5c2318adc SimplifyCFG: don't remove unreachable default switch destinations
An unreachable default destination can be exploited by other optimizations and
allows for more efficient lowering. Both the SDag switch lowering and
LowerSwitch can exploit unreachable defaults.

Also make TurnSwitchRangeICmp handle switches with unreachable default.
This is kind of separate change, but it cannot be tested without the change
above, and I don't want to land the change above without this since that would
regress other tests.

Differential Revision: http://reviews.llvm.org/D6471

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227125 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-26 19:52:32 +00:00
Philip Reames
cce3c83917 Refine memory dependence's notion of volatile semantics
According to my reading of the LangRef, volatiles are only ordered with respect to other volatiles. It is entirely legal and profitable to forward unrelated loads over the volatile load. This patch implements this for GVN by refining the transition rules MemoryDependenceAnalysis uses when encountering a volatile.

The added test cases show where the extra flexibility is profitable for local dependence optimizations. I have a related change (227110) which will extend this to non-local dependence (i.e. PRE), but that's essentially orthogonal to the semantic change in this patch. I have tested the two together and can confirm that PRE works over a volatile load with both changes.  I will be submitting a PRE w/volatiles test case seperately in the near future.

Differential Revision: http://reviews.llvm.org/D6901



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227112 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-26 18:54:27 +00:00
Philip Reames
8a5ad05c13 Pass QueryInst down through non-local dependency calculation
This change is mostly motivated by exposing information about the original query instruction to the actual scanning work in getPointerDependencyFrom when used by GVN PRE. In a follow up change, I will use this to be more precise with regards to the semantics of volatile instructions encountered in the scan of a basic block.

Worth noting, is that this change (despite appearing quite simple) is not semantically preserving. By providing more information to the helper routine, we allow some optimizations to kick in that weren't previously able to (when called from this code path.) In particular, we see that treatment of !invariant.load becomes more precise. In theory, we might see a difference with an ordered/atomic instruction as well, but I'm having a hard time actually finding a test case which shows that.

Test wise, I've included new tests for !invariant.load which illustrate this difference. I've also included some updated TBAA tests which highlight that this change isn't needed for that optimization to kick in - it's handled inside alias analysis itself. 

Eventually, it would be nice to factor the !invariant.load handling inside alias analysis as well.

Differential Revision: http://reviews.llvm.org/D6895



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227110 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-26 18:39:52 +00:00
Erik Eckstein
8f6e8cb4f6 SLPVectorizer: fix wrong scheduling of atomic load/stores.
This fixes PR22306.




git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227077 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-26 09:07:04 +00:00
Chandler Carruth
d4f6d111c1 [PM] Port LowerExpectIntrinsic to the new pass manager.
This just lifts the logic into a static helper function, sinks the
legacy pass to be a trivial wrapper of that helper fuction, and adds
a trivial wrapper for the new PM as well. Not much to see here.

I switched a test case to run in both modes, but we have to strip the
dead prototypes separately as that pass isn't in the new pass manager
(yet).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226999 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-24 11:13:02 +00:00
Chandler Carruth
7a98df7f74 [PM] Port instcombine to the new pass manager!
This is exciting as this is a much more involved port. This is
a complex, existing transformation pass. All of the core logic is shared
between both old and new pass managers. Only the access to the analyses
is separate because the actual techniques are separate. This also uses
a bunch of different and interesting analyses and is the first time
where we need to use an analysis across an IR layer.

This also paves the way to expose instcombine utility functions. I've
got a static function that implements the core pass logic over
a function which might be mildly interesting, but more interesting is
likely exposing a routine which just uses instructions *already in* the
worklist and combines until empty.

I've switched one of my favorite instcombine tests to run with both as
well to make sure this keeps working.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226987 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-24 04:19:17 +00:00
Hans Wennborg
01e223e92e LowerSwitch: replace unreachable default with popular case destination
SimplifyCFG currently does this transformation, but I'm planning to remove that
to allow other passes, such as this one, to exploit the unreachable default.

This patch takes care to keep track of what case values are unreachable even
after the transformation, allowing for more efficient lowering.

Differential Revision: http://reviews.llvm.org/D6697

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226934 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-23 20:43:51 +00:00
Reid Kleckner
7ed0364cee Revert "Don't remove a landing pad if the invoke requires a table entry."
This reverts commit r176827.

Björn Steinbrink pointed out that this didn't actually fix the bug
(PR15555) it was attempting to fix.

With this reverted, we can now remove landingpad cleanups that
immediately resume unwinding, converting the invoke to a call.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226850 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-22 19:29:46 +00:00
Sanjoy Das
49afc9109e Fix crashes in IRCE caused by mismatched types
There are places where the inductive range check elimination pass
depends on two llvm::Values or llvm::SCEVs to be of the same
llvm::Type when they do not need to be. This patch relaxes those
restrictions (by bailing out of the optimization if the types
mismatch), and adds test cases to trigger those paths.

These issues were found by bootstrapping clang with IRCE running in
the -O3 pass ordering.

Differential Revision: http://reviews.llvm.org/D7082



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226793 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-22 08:29:18 +00:00
Elena Demikhovsky
05e7ae1a7b Fixed a bug in masked load/store in reversed loop.
Added a test.

The bug was submitted to bugzilla:
http://llvm.org/bugs/show_bug.cgi?id=22225



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226791 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-22 08:20:06 +00:00
Chandler Carruth
b778cbc0c8 [canonicalize] Teach InstCombine to canonicalize loads which are only
ever stored to always use a legal integer type if one is available.

Regardless of whether this particular type is good or bad, it ensures we
don't get weird differences in generated code (and resulting
performance) from "equivalent" patterns that happen to end up using
a slightly different type.

After some discussion on llvmdev it seems everyone generally likes this
canonicalization. However, there may be some parts of LLVM that handle
it poorly and need to be fixed. I have at least verified that this
doesn't impede GVN and instcombine's store-to-load forwarding powers in
any obvious cases. Subtle cases are exactly what we need te flush out if
they remain.

Also note that this IR pattern should already be hitting LLVM from Clang
at least because it is exactly the IR which would be produced if you
used memcpy to copy a pointer or floating point between memory instead
of a variable.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226781 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-22 05:08:12 +00:00
David Blaikie
f93662d3d5 DebugInfo: Use distinct inlinedAt MDLocations to avoid separate inlined calls being coalesced
When two calls from the same MDLocation are inlined they currently get
treated as one inlined function call (creating difficulty debugging,
duplicate variables, etc).

Clang worked around this by including column information on inline calls
which doesn't address LTO inlining or calls to the same function from
the same line and column (such as through a macro). It also didn't
address ctor and member function calls.

By making the inlinedAt locations distinct, every call site has an
explicitly distinct location that cannot be coalesced with any other
call.

This can produce linearly (2x in the worst case where every call is
inlined and the call instruction has a non-call instruction at the same
location) more debug locations. Any increase beyond that are in cases
where the Clang workaround was insufficient and the new scheme is
creating necessary distinct nodes that were being erroneously coalesced
previously.

After this change to LLVM the incomplete workarounds in Clang. That
should reduce the number of debug locations (in a build without column
info, the default on Darwin, not the default on Linux) by not creating
pseudo-distinct locations for every call to an inline function.

(oh, and I made the inlined-at chain rebuilding iterative instead of
recursive because I was having trouble wrapping my head around it the
way it was - open to discussion on the right design for that function
(including going back to a recursive solution))

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226736 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-21 22:57:29 +00:00
David Majnemer
c070e4e528 InstCombine: Don't strip bitcasts off of callsites marked 'thunk'
The return type of a thunk is meaningless, we just want the arguments
and return value to be forwarded.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226708 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-21 22:32:04 +00:00
Alexander Potapenko
506c6ec22a Use a smaller pragma unroll threshold to reduce test execution time.
When opt is compiled with AddressSanitizer it takes more than 30 seconds
to unroll the loop in unroll_1M().


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226660 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-21 13:52:02 +00:00
Karthik Bhat
7e9f120130 Fix Operandreorder logic in SLPVectorizer to generate longer vectorizable chain.
This patch fixes 2 issues in reorderInputsAccordingToOpcode
1) AllSameOpcodeLeft and AllSameOpcodeRight was being calculated incorrectly resulting in code not being vectorized in few cases.
2) Adds logic to reorder operands if we get longer chain of consecutive loads enabling vectorization. Handled the same for cases were we have AltOpcode.
Thanks Michael for inputs and review.
Review: http://reviews.llvm.org/D6677



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226547 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-20 06:11:00 +00:00
Mehdi Amini
525f296ef1 Fix Reassociate handling of constant in presence of undef float
http://reviews.llvm.org/D6993

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226245 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-16 03:00:58 +00:00
Sanjoy Das
148e8c9b8b Add a new pass "inductive range check elimination"
IRCE eliminates range checks of the form

  0 <= A * I + B < Length

by splitting a loop's iteration space into three segments in a way
that the check is completely redundant in the middle segment.  As an
example, IRCE will convert

  len = < known positive >
  for (i = 0; i < n; i++) {
    if (0 <= i && i < len) {
      do_something();
    } else {
      throw_out_of_bounds();
    }
  }

to

  len = < known positive >
  limit = smin(n, len)
  // no first segment
  for (i = 0; i < limit; i++) {
    if (0 <= i && i < len) { // this check is fully redundant
      do_something();
    } else {
      throw_out_of_bounds();
    }
  }
  for (i = limit; i < n; i++) {
    if (0 <= i && i < len) {
      do_something();
    } else {
      throw_out_of_bounds();
    }
  }


IRCE can deal with multiple range checks in the same loop (it takes
the intersection of the ranges that will make each of them redundant
individually).

Currently IRCE does not do any profitability analysis.  That is a
TODO.

Please note that the status of this pass is *experimental*, and it is
not part of any default pass pipeline.  Having said that, I will love
to get feedback and general input from people interested in trying
this out.

This pass was originally r226201.  It was reverted because it used C++
features not supported by MSVC 2012.

Differential Revision: http://reviews.llvm.org/D6693



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226238 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-16 01:03:22 +00:00
Sanjoy Das
df1b4f601d Revert r226201 (Add a new pass "inductive range check elimination")
The change used C++11 features not supported by MSVC 2012.  I will fix
the change to use things supported MSVC 2012 and recommit shortly.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226216 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-15 22:18:10 +00:00
Sanjoy Das
0170a308ec Add a new pass "inductive range check elimination"
IRCE eliminates range checks of the form

  0 <= A * I + B < Length

by splitting a loop's iteration space into three segments in a way
that the check is completely redundant in the middle segment.  As an
example, IRCE will convert

  len = < known positive >
  for (i = 0; i < n; i++) {
    if (0 <= i && i < len) {
      do_something();
    } else {
      throw_out_of_bounds();
    }
  }

to

  len = < known positive >
  limit = smin(n, len)
  // no first segment
  for (i = 0; i < limit; i++) {
    if (0 <= i && i < len) { // this check is fully redundant
      do_something();
    } else {
      throw_out_of_bounds();
    }
  }
  for (i = limit; i < n; i++) {
    if (0 <= i && i < len) {
      do_something();
    } else {
      throw_out_of_bounds();
    }
  }


IRCE can deal with multiple range checks in the same loop (it takes
the intersection of the ranges that will make each of them redundant
individually).

Currently IRCE does not do any profitability analysis.  That is a
TODO.

Please note that the status of this pass is *experimental*, and it is
not part of any default pass pipeline.  Having said that, I will love
to get feedback and general input from people interested in trying
this out.

Differential Revision: http://reviews.llvm.org/D6693



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226201 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-15 20:45:46 +00:00
Sanjoy Das
7ec1829823 Fix PR22222
The bug was introduced in r225282. r225282 assumed that sub X, Y is
the same as add X, -Y. This is not correct if we are going to upgrade
the sub to sub nuw. This change fixes the issue by making the
optimization ignore sub instructions.

Differential Revision: http://reviews.llvm.org/D6979



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226075 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-15 01:46:09 +00:00
Richard Smith
ef7d38d35a For PR21145: recognise a builtin call to a known deallocation function even if
it's defined in the current module. Clang generates this situation for the
C++14 sized deallocation functions, because it generates a weak definition in
case one isn't provided by the C++ runtime library.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226069 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-15 01:00:33 +00:00
Ramkumar Ramachandra
fba4d82671 [GC] CodeGenPrep transform: simplify offsetable relocate
The transform is somewhat involved, but the basic idea is simple: find
derived pointers that have been offset from the base pointer using gep
and replace the relocate of the derived pointer with a gep to the
relocated base pointer (with the same offset).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226060 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 23:27:07 +00:00
Duncan P. N. Exon Smith
37ac8d3622 IR: Move MDLocation into place
This commit moves `MDLocation`, finishing off PR21433.  There's an
accompanying clang commit for frontend testcases.  I'll attach the
testcase upgrade script I used to PR21433 to help out-of-tree
frontends/backends.

This changes the schema for `DebugLoc` and `DILocation` from:

    !{i32 3, i32 7, !7, !8}

to:

    !MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8)

Note that empty fields (line/column: 0 and inlinedAt: null) don't get
printed by the assembly writer.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226048 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 22:27:36 +00:00
David Majnemer
5e8cd99f55 InstCombine: Don't take A-B<0 into A<B if A-B has other uses
This fixes PR22226.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226023 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 19:26:56 +00:00
Ahmed Bougacha
61d6dc41fa [SimplifyLibCalls] Don't try to simplify indirect calls.
It turns out, all callsites of the simplifier are guarded by a check for
CallInst::getCalledFunction (i.e., to make sure the callee is direct).

This check wasn't done when trying to further optimize a simplified fortified
libcall, introduced by a refactoring in r225640.

Fix that, add a testcase, and document the requirement.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225895 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 00:55:05 +00:00
Sanjay Patel
2211d38267 GVN: propagate equalities for floating point compares
Allow optimizations based on FP comparison values in the same way
as integers. 

This resolves PR17713:
http://llvm.org/bugs/show_bug.cgi?id=17713

Differential Revision: http://reviews.llvm.org/D6911



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225660 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-12 19:29:48 +00:00
Hal Finkel
6829815d96 [PowerPC] Readjust the loop unrolling threshold
Now that the way that the partial unrolling threshold for small loops is used
to compute the unrolling factor as been corrected, a slightly smaller threshold
is preferable. This is expected; other targets may need to re-tune as well.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225566 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-10 00:31:10 +00:00
Hal Finkel
a14d6f1ea5 [LoopUnroll] Fix the partial unrolling threshold for small loop sizes
When we compute the size of a loop, we include the branch on the backedge and
the comparison feeding the conditional branch. Under normal circumstances,
these don't get replicated with the rest of the loop body when we unroll. This
led to the somewhat surprising behavior that really small loops would not get
unrolled enough -- they could be unrolled more and the resulting loop would be
below the threshold, because we were assuming they'd take
(LoopSize * UnrollingFactor) instructions after unrolling, instead of
(((LoopSize-2) * UnrollingFactor)+2) instructions. This fixes that computation.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225565 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-10 00:30:55 +00:00
Hans Wennborg
ca71be6415 SimplifyCFG: check uses of constant-foldable instrs in switch destinations (PR20210)
The previous code assumed that such instructions could not have any uses
outside CaseDest, with the motivation that the instruction could not
dominate CommonDest because CommonDest has phi nodes in it. That simply
isn't true; e.g., CommonDest could have an edge back to itself.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225552 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-09 22:13:31 +00:00
Tim Northover
8cd39a2630 Re-reapply r221924: "[GVN] Perform Scalar PRE on gep indices that feed loads before
doing Load PRE"

It's not really expected to stick around, last time it provoked a weird LTO
build failure that I can't reproduce now, and the bot logs are long gone. I'll
re-revert it if the failures recur.

Original description: Perform Scalar PRE on gep indices that feed loads before
doing Load PRE.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225536 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-09 19:19:56 +00:00
Hal Finkel
139bfee84c [PowerPC] Enable late partial unrolling on the POWER7
The P7 benefits from not have really-small loops so that we either have
multiple dispatch groups in the loop and/or the ability to form more-full
dispatch groups during scheduling. Setting the partial unrolling threshold to
44 seems good, empirically, for the P7. Compared to using no late partial
unrolling, this yields the following test-suite speedups:

SingleSource/Benchmarks/Adobe-C++/simple_types_constant_folding
	-66.3253% +/- 24.1975%
SingleSource/Benchmarks/Misc-C++/oopack_v1p8
	-44.0169% +/- 29.4881%
SingleSource/Benchmarks/Misc/pi
	-27.8351% +/- 12.2712%
SingleSource/Benchmarks/Stanford/Bubblesort
	-30.9898% +/- 22.4647%

I've speculatively added a similar setting for the P8. Also, I've noticed that
the unroller does not quite calculate the unrolling factor correctly for really
tiny loops because it neglects to account for the fact that not every loop body
replicant contains an ending branch and counter increment. I'll fix that later.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225522 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-09 15:51:16 +00:00
Duncan P. N. Exon Smith
f416d72973 IR: Add 'distinct' MDNodes to bitcode and assembly
Propagate whether `MDNode`s are 'distinct' through the other types of IR
(assembly and bitcode).  This adds the `distinct` keyword to assembly.

Currently, no one actually calls `MDNode::getDistinct()`, so these nodes
only get created for:

  - self-references, which are never uniqued, and
  - nodes whose operands are replaced that hit a uniquing collision.

The concept of distinct nodes is still not quite first-class, since
distinct-ness doesn't yet survive across `MapMetadata()`.

Part of PR22111.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225474 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-08 22:38:29 +00:00
Matt Arsenault
3b1f741856 Fix fcmp + fabs instcombines when using the intrinsic
This was only handling the libcall. This is another example
of why only the intrinsic should ever be used when it exists.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225465 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-08 20:09:34 +00:00
Matt Arsenault
374b57cec9 Fix using wrong intrinsic in test
This is a leftover from renaming the intrinsic.
It's surprising the unknown llvm. intrinsic wasn't rejected.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225304 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-06 23:00:33 +00:00
Rafael Espindola
f907a26bc2 Change the .ll syntax for comdats and add a syntactic sugar.
In order to make comdats always explicit in the IR, we decided to make
the syntax a bit more compact for the case of a GlobalObject in a
comdat with the same name.

Just dropping the $name causes problems for

@foo = globabl i32 0, comdat
$bar = comdat ...

and

declare void @foo() comdat
$bar = comdat ...

So the syntax is changed to

@g1 = globabl i32 0, comdat($c1)
@g2 = globabl i32 0, comdat

and

declare void @foo() comdat($c1)
declare void @foo() comdat

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225302 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-06 22:55:16 +00:00
Sanjoy Das
31123d4529 This patch teaches IndVarSimplify to add nuw and nsw to certain kinds
of operations that provably don't overflow. For example, we can prove
%civ.inc below does not sign-overflow. With this change,
IndVarSimplify changes %civ.inc to an add nsw.

  define i32 @foo(i32* %array, i32* %length_ptr, i32 %init) {
   entry:
    %length = load i32* %length_ptr, !range !0
    %len.sub.1 = sub i32 %length, 1
    %upper = icmp slt i32 %init, %len.sub.1
    br i1 %upper, label %loop, label %exit
  
   loop:
    %civ = phi i32 [ %init, %entry ], [ %civ.inc, %latch ]
    %civ.inc = add i32 %civ, 1
    %cmp = icmp slt i32 %civ.inc, %length
    br i1 %cmp, label %latch, label %break
  
   latch:
    store i32 0, i32* %array
    %check = icmp slt i32 %civ.inc, %len.sub.1
    br i1 %check, label %loop, label %break
  
   break:
    ret i32 %civ.inc
  
   exit:
    ret i32 42
  }

Differential Revision: http://reviews.llvm.org/D6748



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225282 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-06 19:02:56 +00:00
Matt Arsenault
d883ca0ca7 Convert fcmp with 0.0 from casted integers to icmp
This is already handled in general when it is known the
conversion can't lose bits with smaller integer types
casted into wider floating point types.

This pattern happens somewhat often in GPU programs that cast
workitem intrinsics to float, which are often compared with 0.

Specifically handle the special case of compares with zero which
should also be known to not lose information. I had a more general
version of this which allows equality compares if the casted float is
exactly representable in the integer, but I'm not 100% confident that
is always correct.

Also fold cases that aren't integers to true / false.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225265 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-06 15:50:59 +00:00
David Majnemer
51e4a66417 InstCombine: Bitcast call arguments from/to pointer/integer type
Try harder to get rid of bitcast'd calls by ptrtoint/inttoptr'ing
arguments and return values when DataLayout says it is safe to do so.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225254 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-06 08:41:31 +00:00
Michael Kuperstein
25903ef9bc Fix broken test from r225159.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225164 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-05 12:34:01 +00:00
Jiangning Liu
614fe873ce Fixed a bug in memory dependence checking module of loop vectorization. The following loop should not be vectorized with current algorithm.
{code}
// loop body
   ... = a[i]          (1)
    ... = a[i+1]       (2)
 .......
a[i+1] = ....          (3)
   a[i] = ...          (4)
{code}

The algorithm tries to collect memory access candidates from AliasSetTracker, and then check memory dependences one another. The memory accesses are unique in AliasSetTracker, and a single memory access in AliasSetTracker may map to multiple entries in AccessAnalysis, which could cover both 'read' and 'write'. Originally the algorithm only checked 'write' entry in Accesses if only 'write' exists. This is incorrect and the consequence is it ignored all read access, and finally some RAW and WAR dependence are missed.

For the case given above, if we ignore two reads, the dependence between (1) and (3) would not be able to be captured, and finally this loop will be incorrectly vectorized.

The fix simply inserts a new loop to find all entries in Accesses. Since it will skip most of all other memory accesses by checking the Value pointer at the very beginning of the loop, it should not increase compile-time visibly.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225159 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-05 10:08:58 +00:00
Chandler Carruth
4f9a7277d1 [SROA] Apply a somewhat heavy and unpleasant hammer to fix PR22093, an
assert out of the new pre-splitting in SROA.

This fix makes the code do what was originally intended -- when we have
a store of a load both dealing in the same alloca, we force them to both
be pre-split with identical offsets. This is really quite hard to do
because we can keep discovering problems as we go along. We have to
track every load over the current alloca which for any resaon becomes
invalid for pre-splitting, and go back to remove all stores of those
loads. I've included a couple of test cases derived from PR22093 that
cover the different ways this can happen. While that PR only really
triggered the first of these two, its the same fundamental issue.

The other challenge here is documented in a FIXME now. We end up being
quite a bit more aggressive for pre-splitting when loads and stores
don't refer to the same alloca. This aggressiveness comes at the cost of
introducing potentially redundant loads. It isn't clear that this is the
right balance. It might be considerably better to require that we only
do pre-splitting when we can presplit every load and store involved in
the entire operation. That would give more consistent if conservative
results. Unfortunately, it requires a non-trivial change to the actual
pre-splitting operation in order to correctly handle cases where we end
up pre-splitting stores out-of-order. And it isn't 100% clear that this
is the right direction, although I'm starting to suspect that it is.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225149 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-05 04:17:53 +00:00
David Majnemer
07d7dbae9e InstCombine: match can find ConstantExprs, don't assume we have a Value
We assumed the output of a match was a Value, this would cause us to
assert because we would fail a cast<>.  Instead, use a helper in the
Operator family to hide the distinction between Value and Constant.

This fixes PR22087.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225127 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-04 07:36:02 +00:00
David Majnemer
77e22b7836 ValueTracking: ComputeNumSignBits should tolerate misshapen phi nodes
PHI nodes can have zero operands in the middle of a transform.  It is
expected that utilities in Analysis don't freak out when this happens.

Note that it is considered invalid to allow these misshapen phi nodes to
make it to another pass.

This fixes PR22086.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225126 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-04 07:06:53 +00:00
David Majnemer
5e9c6212a8 InstCombine: Detect when llvm.umul.with.overflow always overflows
We know overflow always occurs if both ~LHSKnownZero * ~RHSKnownZero
and LHSKnownOne * RHSKnownOne overflow.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225077 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-02 07:29:47 +00:00
Chandler Carruth
ce7f347da2 [SROA] Teach SROA to be more aggressive in splitting now that we have
a pre-splitting pass over loads and stores.

Historically, splitting could cause enough problems that I hamstrung the
entire process with a requirement that splittable integer loads and
stores must cover the entire alloca. All smaller loads and stores were
unsplittable to prevent chaos from ensuing. With the new pre-splitting
logic that does load/store pair splitting I introduced in r225061, we
can now very nicely handle arbitrarily splittable loads and stores. In
order to fully benefit from these smarts, we need to mark all of the
integer loads and stores as splittable.

However, we don't actually want to rewrite partitions with all integer
loads and stores marked as splittable. This will fail to extract scalar
integers from aggregates, which is kind of the point of SROA. =] In
order to resolve this, what we really want to do is only do
pre-splitting on the alloca slices with integer loads and stores fully
splittable. This allows us to uncover all non-integer uses of the alloca
that would benefit from a split in an integer load or store (and where
introducing the split is safe because it is just memory transfer from
a load to a store). Once done, we make all the non-whole-alloca integer
loads and stores unsplittable just as they have historically been,
repartition and rewrite.

The result is that when there are integer loads and stores anywhere
within an alloca (such as from a memcpy of a sub-object of a larger
object), we can split them up if there are non-integer components to the
aggregate hiding beneath. I've added the challenging test cases to
demonstrate how this is able to promote to scalars even a case where we
have even *partially* overlapping loads and stores.

This restores the single-store behavior for small arrays of i8s which is
really nice. I've restored both the little endian testing and big endian
testing for these exactly as they were prior to r225061. It also forced
me to be more aggressive in an alignment test to actually defeat SROA.
=] Without the added volatiles there, we actually split up the weird i16
loads and produce nice double allocas with better alignment.

This also uncovered a number of bugs where we failed to handle
splittable load and store slices which didn't have a begininng offset of
zero. Those fixes are included, and without them the existing test cases
explode in glorious fireworks. =]

I've kept support for leaving whole-alloca integer loads and stores as
splittable even for the purpose of rewriting, but I think that's likely
no longer needed. With the new pre-splitting, we might be able to remove
all the splitting support for loads and stores from the rewriter. Not
doing that in this patch to try to isolate any performance regressions
that causes in an easy to find and revert chunk.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225074 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-02 03:55:54 +00:00
Chandler Carruth
40a8741994 [SROA] Add a test case for r225068 / PR22080.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225070 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-02 00:34:29 +00:00
Chandler Carruth
450b39e971 [SROA] Teach SROA how to much more intelligently handle split loads and
stores.

When there are accesses to an entire alloca with an integer
load or store as well as accesses to small pieces of the alloca, SROA
splits up the large integer accesses. In order to do that, it uses bit
math to merge the small accesses into large integers. While this is
effective, it produces insane IR that can cause significant problems in
the rest of the optimizer:

- It can cause load and store mismatches with GVN on the non-alloca side
  where we end up loading an i64 (or some such) rather than loading
  specific elements that are stored.
- We can't always get rid of the integer bit math, which is why we can't
  always fix the loads and stores to work well with GVN.
- This is especially bad when we have operations that mix poorly with
  integer bit math such as floating point operations.
- It will block things like the vectorizer which might be able to handle
  the scalar stores that underly the aggregate.

At the same time, we can't just directly split up these loads and stores
in all cases. If there is actual integer arithmetic involved on the
values, then using integer bit math is actually the perfect lowering
because we can often combine it heavily with the surrounding math.

The solution this patch provides is to find places where SROA is
partitioning aggregates into small elements, and look for splittable
loads and stores that it can split all the way to some other adjacent
load and store. These are uniformly the cases where failing to split the
loads and stores hurts the optimizer that I have seen, and I've looked
extensively at the code produced both from more and less aggressive
approaches to this problem.

However, it is quite tricky to actually do this in SROA. We may have
loads and stores to the same alloca, or other complex patterns that are
hard to handle. This complexity leads to the somewhat subtle algorithm
implemented here. We have to do this entire process as a separate pass
over the partitioning of the alloca, and split up all of the loads prior
to splitting the stores so that we can handle safely the cases of
overlapping, including partially overlapping, loads and stores to the
same alloca. We also have to reconstitute the post-split slice
configuration so we can avoid iterating again over all the alloca uses
(the slow part of SROA). But we also have to ensure that when we split
up loads and stores to *other* allocas, we *do* re-iterate over them in
SROA to adapt to the more refined partitioning now required.

With this, I actually think we can fix a long-standing TODO in SROA
where I avoided splitting as many loads and stores as probably should be
splittable. This limitation historically mitigated the fallout of all
the bad things mentioned above. Now that we have more intelligent
handling, I plan to remove the FIXME and more aggressively mark integer
loads and stores as splittable. I'll do that in a follow-up patch to
help with bisecting any fallout.

The net result of this change should be more fine-grained and accurate
scalars being formed out of aggregates. At the very least, Clang now
generates perfect code for this high-level test case using
std::complex<float>:

  #include <complex>

  void g1(std::complex<float> &x, float a, float b) {
    x += std::complex<float>(a, b);
  }
  void g2(std::complex<float> &x, float a, float b) {
    x -= std::complex<float>(a, b);
  }

  void foo(const std::complex<float> &x, float a, float b,
           std::complex<float> &x1, std::complex<float> &x2) {
    std::complex<float> l1 = x;
    g1(l1, a, b);
    std::complex<float> l2 = x;
    g2(l2, a, b);
    x1 = l1;
    x2 = l2;
  }

This code isn't just hypothetical either. It was reduced out of the hot
inner loops of essentially every part of the Eigen math library when
using std::complex<float>. Those loops would consistently and
pervasively hop between the floating point unit and the integer unit due
to bit math extraction and insertion of floating point values that were
"stored" in a 64-bit integer register around the loop backedge.

So far, this change has passed a bootstrap and I have done some other
testing and so far, no issues. That doesn't mean there won't be though,
so I'll be prepared to help with any fallout. If you performance swings
in particular, please let me know. I'm very curious what all the impact
of this change will be. Stay tuned for the follow-up to also split more
integer loads and stores.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225061 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-01 11:54:38 +00:00
Sanjay Patel
28650b8ec2 InstCombine: fsub nsz 0, X ==> fsub nsz -0.0, X
Some day the backend may handle instruction-level fast math flags and make
this transform unnecessary, but it's still better practice to use the canonical
representation of fneg when possible (use a -0.0).

This is a partial fix for PR20870 ( http://llvm.org/bugs/show_bug.cgi?id=20870 ).
See also http://reviews.llvm.org/D6723.

Differential Revision: http://reviews.llvm.org/D6731



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225050 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-31 22:14:05 +00:00
David Majnemer
0f77ccd6bb InstCombine: try to transform A-B < 0 into A < B
We are allowed to move the 'B' to the right hand side if we an prove
there is no signed overflow and if the comparison itself is signed.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225034 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-31 04:21:41 +00:00
Philip Reames
91a083c57f Carry facts about nullness and undef across GC relocation
This change implements four basic optimizations:

    If a relocated value isn't used, it doesn't need to be relocated.
    If the value being relocated is null, relocation doesn't change that. (Technically, this might be collector specific. I don't know of one which it doesn't work for though.)
    If the value being relocated is undef, the relocation is meaningless.
    If the value being relocated was known nonnull, the relocated pointer also isn't null. (Since it points to the same source language object.)

I outlined other planned work in comments.

Differential Revision: http://reviews.llvm.org/D6600



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224968 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-29 23:27:30 +00:00
Philip Reames
1714ad67bd Refine the notion of MayThrow in LICM to include a header specific version
In LICM, we have a check for an instruction which is guaranteed to execute and thus can't introduce any new faults if moved to the preheader. To handle a function which might unconditionally throw when first called, we check for any potentially throwing call in the loop and give up.

This is unfortunate when the potentially throwing condition is down a rare path. It prevents essentially all LICM of potentially faulting instructions where the faulting condition is checked outside the loop. It also greatly diminishes the utility of loop unswitching since control dependent instructions - which are now likely in the loops header block - will not be lifted by subsequent LICM runs.

define void @nothrow_header(i64 %x, i64 %y, i1 %cond) {
; CHECK-LABEL: nothrow_header
; CHECK-LABEL: entry
; CHECK: %div = udiv i64 %x, %y
; CHECK-LABEL: loop
; CHECK: call void @use(i64 %div)
entry:
  br label %loop
loop: ; preds = %entry, %for.inc
  %div = udiv i64 %x, %y
  br i1 %cond, label %loop-if, label %exit
loop-if:
  call void @use(i64 %div)
  br label %loop
exit:
  ret void
}

The current patch really only helps with non-memory instructions (i.e. divs, etc..) since the maythrow call down the rare path will be considered to alias an otherwise hoistable load.  The one exception is that it does kick in for loads which are known to be invariant without regard to other possible stores, i.e. those marked with either !invarant.load metadata of tbaa 'is constant memory' metadata.

Differential Revision: http://reviews.llvm.org/D6725



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224965 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-29 23:00:57 +00:00
Philip Reames
456b7b602c Loading from null is valid outside of addrspace 0
This patches fixes a miscompile where we were assuming that loading from null is undefined and thus we could assume it doesn't happen.  This transform is perfectly legal in address space 0, but is not neccessarily legal in other address spaces.

We really should introduce a hook to control this property on a per target per address space basis.  We may be loosing valuable optimizations in some address spaces by being too conservative.

Original patch by Thomas P Raoux (submitted to llvm-commits), tests and formatting fixes by me.




git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224961 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-29 22:46:21 +00:00
David Majnemer
7627d9c229 InstCombine: Infer nuw for multiplies
A multiply cannot unsigned wrap if there are bitwidth, or more, leading
zero bits between the two operands.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224849 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-26 09:50:35 +00:00
David Majnemer
998ae69abe InstCombe: Infer nsw for multiplies
We already utilize this logic for reducing overflow intrinsics, it makes
sense to reuse it for normal multiplies as well.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224847 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-26 09:10:14 +00:00
Michael Kuperstein
a098c770e1 [ValueTracking] Move GlobalAlias handling to be after the max depth check in computeKnownBits()
GlobalAlias handling used to be after GlobalValue handling, which meant it was, in practice, dead code. r220165 moved GlobalAlias handling to be before GlobalValue handling, but also moved it to be before the max depth check, causing an assert due to a recursion depth limit violation. 

This moves GlobalAlias handling forward to where it's safe, and changes the GlobalValue handling to only look at GlobalObjects.

Differential Revision: http://reviews.llvm.org/D6758

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224765 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-23 11:33:41 +00:00
Michael Liao
b9e302f3ca [SimplifyCFG] Revise common code sinking
- Fix the case where more than 1 common instructions derived from the same
  operand cannot be sunk. When a pair of value has more than 1 derived values
  in both branches, only 1 derived value could be sunk.
- Replace BB1 -> (BB2, PN) map with joint value map, i.e.
  map of (BB1, BB2) -> PN, which is more accurate to track common ops.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224757 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-23 08:26:55 +00:00
Bruno Cardoso Lopes
a559a2317c [LCSSA] Handle PHI insertion in disjoint loops
Take two disjoint Loops L1 and L2.

LoopSimplify fails to simplify some loops (e.g. when indirect branches
are involved). In such situations, it can happen that an exit for L1 is
the header of L2. Thus, when we create PHIs in one of such exits we are
also inserting PHIs in L2 header.

This could break LCSSA form for L2 because these inserted PHIs can also
have uses in L2 exits, which are never handled in the current
implementation. Provide a fix for this corner case and test that we
don't assert/crash on that.

Differential Revision: http://reviews.llvm.org/D6624

rdar://problem/19166231

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224740 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-22 22:35:46 +00:00
David Majnemer
6df827240e This should have been part of r224676.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224677 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-20 04:48:34 +00:00
David Majnemer
854a37649a InstCombine: Squash an icmp+select into bitwise arithmetic
(X & INT_MIN) == 0 ? X ^ INT_MIN : X  into  X | INT_MIN
(X & INT_MIN) != 0 ? X ^ INT_MIN : X  into  X & INT_MAX

This fixes PR21993.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224676 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-20 04:45:35 +00:00
David Majnemer
9cd99a0724 InstSimplify: Optimize away pointless comparisons
(X & INT_MIN) ? X & INT_MAX : X  into  X & INT_MAX
(X & INT_MIN) ? X : X & INT_MAX  into  X
(X & INT_MIN) ? X | INT_MIN : X  into  X
(X & INT_MIN) ? X : X | INT_MIN  into  X | INT_MIN

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224669 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-20 03:04:38 +00:00
Bruno Cardoso Lopes
06833ca7c1 Reapply: [InstCombine] Fix visitSwitchInst to use right operand types for sub cstexpr
The visitSwitchInst generates SUB constant expressions to recompute the
switch condition. When truncating the condition to a smaller type, SUB
expressions should use the previous type (before trunc) for both
operands. Also, fix code to also return the modified switch when only
the truncation is performed.

This fixes an assertion crash.

Differential Revision: http://reviews.llvm.org/D6644

rdar://problem/19191835

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224588 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-19 17:12:35 +00:00
Sanjay Patel
7c5fa50875 use -0.0 when creating an fneg instruction
Backends recognize (-0.0 - X) as the canonical form for fneg
and produce better code. Eg, ppc64 with 0.0:

   lis r2, ha16(LCPI0_0)
   lfs f0, lo16(LCPI0_0)(r2)
   fsubs f1, f0, f1
   blr

vs. -0.0:

   fneg f1, f1
   blr

Differential Revision: http://reviews.llvm.org/D6723



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224583 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-19 16:44:08 +00:00
Bruno Cardoso Lopes
01b07d541b Revert "[InstCombine] Fix visitSwitchInst to use right operand types for sub cstexpr"
Reverts commit r224574 to appease buildbots:

The visitSwitchInst generates SUB constant expressions to recompute the
switch condition. When truncating the condition to a smaller type, SUB
expressions should use the previous type (before trunc) for both
operands. This fixes an assertion crash.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224576 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-19 14:36:24 +00:00
Bruno Cardoso Lopes
cba407d019 [InstCombine] Fix visitSwitchInst to use right operand types for sub cstexpr
The visitSwitchInst generates SUB constant expressions to recompute the
switch condition. When truncating the condition to a smaller type, SUB
expressions should use the previous type (before trunc) for both
operands. This fixes an assertion crash.

Differential Revision: http://reviews.llvm.org/D6644

rdar://problem/19191835

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224574 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-19 14:23:15 +00:00
David Majnemer
73059bd1f1 ConstantFold: Shifting undef by zero results in undef
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224553 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-18 23:54:43 +00:00
Suyog Sarda
4bfc4f2e8c Revert 224119 "This patch recognizes (+ (+ v0, v1) (+ v2, v3)), reorders them for bundling into vector of loads,
and vectorizes it." 

This was re-ordering floating point data types resulting in mismatch in output.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224424 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-17 10:34:27 +00:00
Elena Demikhovsky
982a8b3aeb Added 5 more tests related to sink store revision 224247
- by Ella Bolshinsky

http://reviews.llvm.org/D6420



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224418 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-17 08:12:59 +00:00
Erik Eckstein
96bd465d6c Strength reduce intrinsics with overflow into regular arithmetic operations if possible.
Some intrinsics, like s/uadd.with.overflow and umul.with.overflow, are already strength reduced.
This change adds other arithmetic intrinsics: s/usub.with.overflow, smul.with.overflow.
It completes the work on PR20194.




git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224417 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-17 07:29:19 +00:00
David Majnemer
891ec6d69f InstSimplify: shl nsw/nuw undef, %V -> undef
We can always choose an value for undef which might cause %V to shift
out an important bit except for one case, when %V is zero.

However, shl behaves like an identity function when the right hand side
is zero.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224405 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-17 01:54:33 +00:00
Elena Demikhovsky
14fb445715 Masked Load and Store Intrinsics in loop vectorizer.
The loop vectorizer optimizes loops containing conditional memory
accesses by generating masked load and store intrinsics.
This decision is target dependent.

http://reviews.llvm.org/D6527



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224334 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-16 11:50:42 +00:00
Sanjoy Das
574e01c32e Teach ScalarEvolution to exploit min and max expressions when proving
isKnownPredicate.

The motivation for this change is to optimize away checks in loops
like this:

    limit = min(t, len)
    for (i = 0 to limit)
      if (i >= len || i < 0) throw_array_of_of_bounds();
      a[i] = ...

Differential Revision: http://reviews.llvm.org/D6635



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224285 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-15 22:50:15 +00:00
Duncan P. N. Exon Smith
1ef70ff39b IR: Make metadata typeless in assembly
Now that `Metadata` is typeless, reflect that in the assembly.  These
are the matching assembly changes for the metadata/value split in
r223802.

  - Only use the `metadata` type when referencing metadata from a call
    intrinsic -- i.e., only when it's used as a `Value`.

  - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
    when referencing it from call intrinsics.

So, assembly like this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata !{i32 %v}, metadata !0)
      call void @llvm.foo(metadata !{i32 7}, metadata !0)
      call void @llvm.foo(metadata !1, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{metadata !3}, metadata !0)
      ret void, !bar !2
    }
    !0 = metadata !{metadata !2}
    !1 = metadata !{i32* @global}
    !2 = metadata !{metadata !3}
    !3 = metadata !{}

turns into this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata i32 %v, metadata !0)
      call void @llvm.foo(metadata i32 7, metadata !0)
      call void @llvm.foo(metadata i32* @global, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{!3}, metadata !0)
      ret void, !bar !2
    }
    !0 = !{!2}
    !1 = !{i32* @global}
    !2 = !{!3}
    !3 = !{}

I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines).  I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.

This is part of PR21532.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224257 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-15 19:07:53 +00:00
Elena Demikhovsky
a8a374135b Added a test related to 224247 revision
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224248 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-15 14:14:10 +00:00
Suyog Sarda
4dcffed444 Typo Correction in Test Case. NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224244 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-15 12:19:46 +00:00
Ahmed Bougacha
780a093afb Reapply "[ARM] Combine base-updating/post-incrementing vector load/stores."
r223862 tried to also combine base-updating load/stores.
r224198 reverted it, as "it created a regression on the test-suite
on test MultiSource/Benchmarks/Ptrdist/anagram by scrambling the order
in which the words are shown."
Reapply, with a fix to ignore non-normal load/stores.
Truncstores are handled elsewhere (you can actually write a pattern for
those, whereas for postinc loads you can't, since they return two values),
but it should be possible to also combine extloads base updates, by checking
that the memory (rather than result) type is of the same size as the addend.

Original commit message:
We used to only combine intrinsics, and turn them into VLD1_UPD/VST1_UPD
when the base pointer is incremented after the load/store.

We can do the same thing for generic load/stores.

Note that we can only combine the first load/store+adds pair in
a sequence (as might be generated for a v16f32 load for instance),
because other combines turn the base pointer addition chain (each
computing the address of the next load, from the address of the last
load) into independent additions (common base pointer + this load's
offset).

Differential Revision: http://reviews.llvm.org/D6585


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224203 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-13 23:22:12 +00:00
Renato Golin
1e173b7139 Revert "[ARM] Combine base-updating/post-incrementing vector load/stores."
This reverts commit r223862, as it created a regression on the test-suite
on test MultiSource/Benchmarks/Ptrdist/anagram by scrambling the order
in which the words are shown. We'll investigate the issue and re-apply
when safe.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224198 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-13 20:23:18 +00:00
David Majnemer
3b7e6d27d2 ValueTracking: Don't recurse too deeply in computeKnownBitsFromAssume
Respect the MaxDepth recursion limit, doing otherwise will trigger an
assert in computeKnownBits.

This fixes PR21891.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224168 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-12 23:59:29 +00:00
Suyog Sarda
1dea0dc279 This patch recognizes (+ (+ v0, v1) (+ v2, v3)), reorders them for bundling into vector of loads,
and vectorizes it. 
 
 Test case :
 
       float hadd(float* a) {
           return (a[0] + a[1]) + (a[2] + a[3]);
        }
 
 
 AArch64 assembly before patch :
 
        ldp	s0, s1, [x0]
 	ldp	s2, s3, [x0, #8]
 	fadd	s0, s0, s1
 	fadd	s1, s2, s3
 	fadd	s0, s0, s1
 	ret
 
 AArch64 assembly after patch :
 
        ldp	d0, d1, [x0]
 	fadd	v0.2s, v0.2s, v1.2s
 	faddp	s0, v0.2s
 	ret

Reviewed Link : http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20141208/248531.html



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224119 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-12 12:53:44 +00:00
Steven Wu
a511846bdf Fix another infinite loop in InstCombine
Summary:
InstCombine infinite-loops for the testcase added
It is because InstCombine is generating instructions that can be
optimized by itself. Fix by not optimizing frem if the optimized
type is the same as original type.
rdar://problem/19150820

Reviewers: majnemer

Differential Revision: http://reviews.llvm.org/D6634

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224097 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-12 04:34:07 +00:00
Andrea Di Biagio
f27500040b [InstCombine][X86] Improved folding of calls to Intrinsic::x86_sse4a_insertqi.
This patch teaches the instruction combiner how to fold a call to 'insertqi' if
the 'length field' (3rd operand) is set to zero, and if the sum between
field 'length' and 'bit index' (4th operand) is bigger than 64.

From the AMD64 Architecture Programmer's Manual:
1. If the sum of the bit index + length field is greater than 64, then the
   results are undefined;
2. A value of zero in the field length is defined as a length of 64.

This patch improves the existing combining logic for intrinsic 'insertqi'
adding extra checks to address both point 1. and point 2.

Differential Revision: http://reviews.llvm.org/D6583


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224054 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-11 20:44:59 +00:00
David Majnemer
c57bee5399 InstSimplify: Remove usesless %a parameter from tests
No functional change intended.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224016 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-11 12:56:17 +00:00
Michael Kuperstein
1696b35ff1 The inliner needs to fix up debug information for llvm.dbg.declare, not only for llvm.dbg.value.
Patch by Amjad Aboud

Differential Revision: http://reviews.llvm.org/D6525


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224015 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-11 12:41:10 +00:00
David Majnemer
72c6bdbf70 ConstantFold, InstSimplify: undef >>a x can be either -1 or 0, choose 0
Zero is usually a nicer constant to have than -1.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223969 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-10 21:58:15 +00:00
David Majnemer
ea9bcfc707 ConstantFold: an undef shift amount results in undef
X shifted by undef results in undef because the undef value can
represent values greater than the width of the operands.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223968 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-10 21:38:05 +00:00
David Majnemer
895316336e ConstantFold: div undef, 0 should fold to undef, not zero
Dividing by zero yields an undefined value.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223924 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-10 09:14:55 +00:00
David Majnemer
6578f1beb1 InstSimplify: [al]shr exact undef, %X -> undef
Exact shifts always keep the non-zero bits of their input.  This means
it keeps it's undef bits.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223923 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-10 09:14:52 +00:00
David Majnemer
1297775557 InstSimplify: div %X, 0 -> undef
We already optimized rem %X, 0 to undef, we should do the same for div.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223919 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-10 07:52:18 +00:00
Ahmed Bougacha
605c40341b [ARM] Combine base-updating/post-incrementing vector load/stores.
We used to only combine intrinsics, and turn them into VLD1_UPD/VST1_UPD
when the base pointer is incremented after the load/store.

We can do the same thing for generic load/stores.

Note that we can only combine the first load/store+adds pair in
a sequence (as might be generated for a v16f32 load for instance),
because other combines turn the base pointer addition chain (each
computing the address of the next load, from the address of the last
load) into independent additions (common base pointer + this load's
offset).

Differential Revision: http://reviews.llvm.org/D6585


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223862 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-10 00:07:37 +00:00