This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203083 91177308-0d34-0410-b5e6-96231b3b80d8
Sweep the codebase for common typos. Includes some changes to visible function
names that were misspelt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200018 91177308-0d34-0410-b5e6-96231b3b80d8
Generalized the heuristic that looks at the (very rough) size of the
register file before enabling regpressure tracking.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199766 91177308-0d34-0410-b5e6-96231b3b80d8
PostGenericScheduler uses either the new machine model or the hazard
checker for top-down scheduling. Most of the infrastructure for PreRA
machine scheduling is reused.
With a some tuning, this should allow MachineScheduler to be default
for all ARM targets, including cortex-A9, using the new machine
model. Likewise, with additional tuning, it should be able to replace
PostRAScheduler for all targets.
The PostMachineScheduler pass does not currently run the
AntiDepBreaker. There is less need for it on targets that are already
running preRA MachineScheduler. I want to prove it's necessary before
committing to the maintenance burden.
The PostMachineScheduler also currently removes kill flags and adds
them all back later. This is a bit ridiculous. I'd prefer passes to
directly use a liveness utility than rely on flags.
A test case that enables this scheduler will be included in a
subsequent checkin that updates the A9 model.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198122 91177308-0d34-0410-b5e6-96231b3b80d8
Factor the MachineFunctionPass into MachineSchedulerBase.
Split the DAG class into ScheduleDAGMI and SchedulerDAGMILive.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198119 91177308-0d34-0410-b5e6-96231b3b80d8
These helper classes take care of the book-keeping the drives the
GenericScheduler heuristics. It is likely that developers writing
target-specific schedulers that work similarly to GenericScheduler
will want to use these helpers too. The immediate goal is to develop a
GenericPostScheduler that can run in place of the old PostRAScheduler,
but will use the new machine model.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196643 91177308-0d34-0410-b5e6-96231b3b80d8
Not only does it trigger -Wparentheses, I think the assert actually
relies on incorrect operator precedence.
Also, the grammar as questionable, but I might not know enough about the
problem at hand.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196567 91177308-0d34-0410-b5e6-96231b3b80d8
This allows a target to use MI-Sched as an in-order scheduler that
will model strict resource conflicts without defining a processor
itinerary. Instead, the target can now use the new per-operand machine
model and define in-order resources with BufferSize=0. For example,
this would allow restricting the type of operations that can be formed
into a dispatch group. (Normally NumMicroOps is sufficient to enforce
dispatch groups).
If the intent is to model latency in in-order pipeline, as opposed to
resource conflicts, then a resource with BufferSize=1 should be
defined instead.
This feature is only casually tested as there are no in-tree targets
using it yet. However, Hal will be experimenting with POWER7.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196517 91177308-0d34-0410-b5e6-96231b3b80d8
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file. The memory leaks in this version have been fixed. Thanks
Alexey for pointing them out.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195064 91177308-0d34-0410-b5e6-96231b3b80d8
This change is incorrect. If you delete virtual destructor of both a base class
and a subclass, then the following code:
Base *foo = new Child();
delete foo;
will not cause the destructor for members of Child class. As a result, I observe
plently of memory leaks. Notable examples I investigated are:
ObjectBuffer and ObjectBufferStream, AttributeImpl and StringSAttributeImpl.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194997 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the API a bit more natural to use and makes it easier to make
LiveRanges implementation details private.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192394 91177308-0d34-0410-b5e6-96231b3b80d8
The global registry is used to allow command line override of the
scheduler selection, but does not work well as the normal selection
API. For example, the same LLVM process should be able to target
multiple targets or subtargets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191071 91177308-0d34-0410-b5e6-96231b3b80d8
This was an experimental scheduler a year ago. It's now used by
several subtargets, both in-order and out-of-order, and it
is about to be enabled by default for x86 and armv7. It will be the
new GenericScheduler for subtargets that don't provide their own
SchedulingStrategy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191051 91177308-0d34-0410-b5e6-96231b3b80d8
Arnold's idea.
I generally try to avoid stateful heuristics because it can make
debugging harder. However, we need a way to prevent the latency
priority from dominating, and it somewhat makes sense to schedule
aggressively for latency only within an issue group.
Swift in particular likes this, and it doesn't hurt anyone else:
| Benchmarks/MiBench/consumer-lame | 10.39% |
| Benchmarks/Misc/himenobmtxpa | 9.63% |
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190360 91177308-0d34-0410-b5e6-96231b3b80d8
Allow subtargets to customize the generic scheduling strategy.
This is convenient for targets that don't need to add new heuristics
by specializing the strategy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190176 91177308-0d34-0410-b5e6-96231b3b80d8
Fast register pressure tracking currently only takes effect during
bottom up scheduling. Forcing this is a bit faster and simpler for
targets that don't have many scheduling constraints and don't need
top-down scheduling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190014 91177308-0d34-0410-b5e6-96231b3b80d8
If the instruction window is < NumRegs/2, pressure tracking is not
likely to be effective. The scheduler has to process a very large
number of tiny blocks. We want this to be fast.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189991 91177308-0d34-0410-b5e6-96231b3b80d8
Register pressure tracking is half the complexity of the
scheduler. It's useful to be able to turn it off for compile time and
performance comparisons.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189987 91177308-0d34-0410-b5e6-96231b3b80d8
There was one case that we could hit a DebugValue where I didn't think
to check. DebugValues are evil. No checkinable test case, sorry. It's
an obvious fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189717 91177308-0d34-0410-b5e6-96231b3b80d8
This removes all expensive pressure tracking logic from the scheduling
critical path of node comparison.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189643 91177308-0d34-0410-b5e6-96231b3b80d8
Only compare pressure within the same set. When multiple sets are
affected, we prioritize the most constrained set.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189641 91177308-0d34-0410-b5e6-96231b3b80d8